Low Voltage Final Distribution

Acti9 Protection and Isolation
General overview Circuit Protective Devices C-3
Switches and Disconnectors
iSW switches C-5
Accessorisation / Auxiliarisation iSW C-8
Circuit Protective Devices - MCBs
iC60N miniature circuit breakers (6000A MCBs) C-9
iC60H miniature circuit breakers(10000A MCBs) C-12
iC60L miniature circuit breakers (15kA MCBs) C-16
Accessorisation / Auxiliarisation iC60 C-19
C60H-DC miniature circuit breakers (DC MCBs) C-20
Accessorisation / Auxiliarisation C60H-DC C-23
C120N miniature circuit breakers (10000A MCBs) C-24
C120H miniature circuit breakers (15000A MCBs) C-25
Accessorisation / Auxiliarisation C120, Vigi C120 C-28
STI isolatable fuse-carriers C-29
Earth Leakage Protection Devices
General overview. C-32
Residual Current Devices - RCDs
iID residual current circuit breakers (A, A-SI type RCCBs) C-35
ilD residual current circuit breakers (B-SI type RCCBs) C-38
iID residual current circuit breakers (B-EV type RCCBs) C-39
Vigi iC60 add-on residual current devices (A type) C-42
Vigi C120 add-on residual current devices (A type) C-46
iDPN Vigi residual current devices (A, A-SI type RCBOs) C-49
iC60N residual current devices (A type RCBOs) C-51
iC60H residual current devices (A type RCBOs) C-52
iC60H2 residual current devices (A type 2P RCBOs) C-53
iSPN Vigi residual current devices (10 mA RCBOs) C-56
Arc Fault Detection Devices - AFDDs
iDPH VigiARC Arc fault detection RCBOs C-58
Surge Protection Devices - SPDs
iPRD1 Surge arresters Type $1+2$ C-60
iPRD Surge arresters Type 2 or Type 3 C-62
Accessories
iC60, iID, iDPN Vigi, iSW C-66
C120, C60H-DC, iSW C-71
NG125 Devices C-73
Auxiliaries
iC60, iID, iDPN Vigi, iDPN VigiARC C-74
C120, C60H-DC C-82

Low Voltage Final Distribution

Acti9 Control and signalling

Push-buttons and Indication

iPB Push-Buttons C-87
ilL indicator lights C-88
Selector switches
iSSW Linear Switches C-89
Remote Control
iCT contactors C-90
iCT contactor auxiliaries C-95
iCT+ high-performance contactors C-100
iTL impulse relays C-102
iTL+ high-performance impulse relays C-116
Time Delay Relays C-118

Acti9 Protection and Isolation

General overview

Choice of Circuit Protective Devices

Protection of electrical circuits against short circuits and thermal overloads

Protection of loads against overloads

Protection of control devices

Protection for people against indirect contacts in IT and
TN earthing systems

- Circuit breakers can:
- Provide protection against fires that might be caused by a faulty electric circuit (short circuit, overload, insulation fault)
- Provide protection against electric shock in the event of indirect contact.
\square The choice of circuit breakers must be optimised to provide optimum protection while providing continuity of service.
- Although circuit breakers are sometimes used as circuit control devices, it is recommended to install separate control devices which are more suitable for frequent switching operations (switch, contactor, impulse relay).

Choice of protective circuit breakers

This depends on several criteria:

- breaking capacity
- max. voltage rating
- planned amperage for the circuit to be protected
- nature and cross section of cables
- ambient temperature (possible derating)
- the loads, which determine the number of poles of the protective circuit breaker installed on their power supply circuit and the tripping curve.

Choice of breaking capacity

- The breaking capacity must be greater than or equal to the prospective short circuit current (Isc) upstream of the circuit breaker (Isc depends on the length and cross section of the cable and the power of the source).
- However, in the event of use in combination with an upstream circuit breaker limiting the current, this breaking capacity can possibly be reduced (cascading, see module 557E4200 and short circuit current limiting, see module CA908025).

Choice of rating

- The rating (In) is chosen above all to protect the electrical connections:
- for cables: it is chosen according to the current carrying capacity
- for Canalis prefabricated busbar trunking: it must be simply less than or equal to the rating of the busbar trunking.
- Generally, the rating should be greater than the nominal current of the circuits.

Choice of tripping curve

The tripping curve makes the protection more or less sensitive to:

- the inrush current at power up
- the overload current.

Tripping thresholds (x ln)		
Curves	AS/NZS 60898 and ASI NZS IEC 60947-2	AS/NZS 60898 and AS/ NZS IEC 60947-2
B	Between 3 In and 5 In	Between 3.2 In and 4.8 In
C	Between 5 In and 10 ln	Between 7 In and 10 In
D or K	-	Between 10 In and 14 In
MA	-	12 ln
Z	-	Between 2.4 In and 3.6 In

- To prevent nuisance tripping, it may be advisable to choose a less sensitive curve, e.g. change from B to C (tripping curves, see module CA908024).

Acti9 Isolation and Overcurrent Protection

General overview

Choice of Circuit Protective Devices

Continuity of service

- Nuisance tripping can be generated by
- the inrush current at circuit closure
- the overload current, and sometimes the harmonic current flowing through the neutral of three-phase circuits ${ }^{(1)}$.

Solutions

- Choose a circuit breaker with a less sensitive curve: change from B curve to C curve or from C curve to D curve (2).
- Reduce the number of loads per circuit.
- Energise the circuits in succession, using time delay auxiliaries on the control devices.
- Increase the rating of the circuit breaker to a greater value that will still maintain the protection of the downstream circuit.
- Ensure discrimination of the protective devices (see modules 557E4300/4305/4310/4320/4330).

Discrimination is the coordination of automatic breaking devices in such a way that a fault occurring at any point on the network is interrupted by the circuit breaker located immediately upstream of the fault, and by it alone.

Total discrimination

For all values of the fault, from overload to non-resistive short circuit, distribution is fully discriminating if D2 opens and if D1 remains closed.

Partial discrimination

Discrimination is partial if the above condition is not complied with up to full short circuit current, but only up to a lower value. This value is called the discrimination limit. In the event of a fault exceeding this value, circuit breakers D1 and D2 open.
(1) In the specific case of three-phase circuits supplying single-phase non-linear loads such as single-phase VSD's or discharge lamps with electronic ballasts, harmonic currents of the third order and multiples of three are generated. The neutral cable must be sized to prevent it from overheating. However, the current flowing through the neutral conductor may become greater than the current of each phase and cause nuisance tripping.
(2) In the case of installations with very long cables in a TN or IT system, it may be necessary to add an earth leakage protection device to provide protection against indirect contact due to increased earth fault loop impedance

Circuit isolation

Switching and Disconnection

The purpose of disconnection is to separate and isolate a circuit or a device from the rest of the electrical installation in order to provide safety for personnel having to work on the electrical installation for maintenance or repair.

- The circuit breaker must interrupt all active conductors. The neutral (1), may be interrupted according to the restrictions of AS/NZS 3000
- It must be lockable or padlockable in "open" position in order to prevent any unintentional reclosing, at least in industrial environments.
- It must be suitable for isolation.
(1) With the exception of the PEN conductor, which should never be cut off.

Motor protection

Protection of motors against risks of overheating due, for example, to an extended overload, rotor blocking or singlephase operation. Given the specific characteristics of motors:

- overload detection is provided by a thermal relay specially designed for their protection.
- in this case short circuit protection is provided by a circuit breaker without a thermal release (MA type).

Acti9 Protection and Isolation

General overview

iSW switches

Acti9 Protection and Isolation

General overview

iSW switches

Large circuit labelling area

VISI-SAFE window

Positive contact indication

- Suitable for industrial isolation according to AS/NZS IEC 60947-2 standard.
- A green strip on the toggle indicates full opening of all the poles

Dimensions (mm)

iSW

iOF

General overview

iSW switches

Technical data

Main characteristics	
Insulation voltage (Ui)	500 VAC
Pollution degree	3
Power circuit	
Rated impulse withstand voltage (Uimp)	6 kV
Operating category	AC-22 A
Permissible rated short-time withstand current (Icw)	1500 A
Conditional rated short-circuit current (Inc)	10 kA according to AS/NZS IEC 60947-3
Rated short-circuit closing current (Icm)	5 kA
Direct current use	iSW40/63 A
Operating category	DC-22A
Voltage rating (Ue)	48 V DC
	110 V DC with 2 poles in series
Additional characteristics	
Degree of protection	IP20
Device in modular enclosure	IP40 Insulation class II
Endurance (O-C)	20,000 cycles
	$40 \mathrm{~A}-63 \mathrm{~A}$ (15,000 cycles
	$80 \mathrm{~A}-100 \mathrm{~A}$ - 10,000 cycles
	125 A 2500 cycles
Operating temperature	$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Tropicalization	Treatment 2 (relative humidity 95% at $55^{\circ} \mathrm{C}$)
iOF characteristics	
Rated voltage (Ue)	240... 415 VAC
	24...130 V DC
Operating frequency	$50 / 60 \mathrm{~Hz}$
	24 VDC 6 A
	48 VDC 2 A
	60 V DC 1.5 A
	130 V DC 1 A
	240 VAC 6 A
	415 VAC 3 A
Number of contacts	1 NO/NC
Operating temperature	$-35^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Acti9 Protection and Isolation

Accessories

Accessorisation / Auxiliarisation iSW

Connection accessories
$1 \quad 50 \mathrm{~mm}^{2}$ Al terminal

27060

Mounting accessories

2	Sealable terminal shields for top and bottom connection	1 P (set of 2)	A9A26975
		2 P (set of 2)	A9A26976
		3P	$1 P+2 P$
		4 P	$2 P+2 P$
3	Interpole barrier	(set of 10)	A9A27001
4	9 mm spacer		A9A27062
5	Padlocking device	(set of 10)	A9A26970
6		Plug-in base	A9A27003
7	Rotary handle	Black handle	A9A27005
		Red handle	A9A27006

Auxiliary

Indication

8 iOF open/close auxiliary contact
A9A26924
OF open/close auxiliary contact A9A26924

1
1

\qquad

7

General overview

iC60N miniature circuit breakers (curve C, D)

AS/NZS IEC 60947-2

AS/NZS 60898-1
As per the above standards:

- iC60N circuit breakers are multi-standard circuit breakers which combine the following functions:
- circuit protection against short-circuit currents,
- circuit protection against overload currents,
- suitable for industrial isolation according to AS/NZS IEC 60947-2, standard.
- fault tripping indication by a red mechanical indicator in circuit breaker front face.

Alternating current (AC) 50/60 Hz

Breaking capacity (Icu) according to AS/NZS IEC 60947-2					Service breaking capacity (Ics)
		Voltage (Ue)			
Ph/Ph (2P, 3P)		12 to 133 V	230 to 240 V		
Ph/N (1P)		12 to 60 V	100 to 133 V		
Rating (In)	1 to 4 A	50 kA	50 kA	50 kA	100% of Icu
	6 to 63 A	36 kA	20 kA	10 kA	75% of Icu

Breaking capacity (Icn) according to AS/NZS 60898-1	
	Voltage (Ue)
Ph/Ph	400 to 415 V
Ph/N	230 to 240 V
Rating (In)	1 to 63 A

Direct current (DC)
Breaking capacity (Icu) according to AS/NZS IEC 60947-2
Service breaking capacity (Ics)

		Voltage (Ue)			
	250 V	500 V			
Between +/-		1 P	2 P		
Number of poles		$\mathbf{1}$ to 63 A	6 kA	6 kA	75% of Icu
Rating (In)					

Catalog numbers
iC60N circuit breaker

Type	1P		2P		3P	
						Curve
Rating (In)	D	C	D	C	D	C
$1 \mathrm{~A}(1)$		A9F44101		A9F44201		A9F44301
$2 \mathrm{~A}(1)$		A9F44102		A9F44202		A9F44302
4 A (1)		A9F44104		A9F44204		A9F44304
6 A	A9F45106	A9F44106	A9F45206	A9F44206	A9F45306	A9F44306
10 A	A9F45110	A9F44110	A9F45210	A9F44210	A9F45310	A9F44310
16 A	A9F45116	A9F44116	A9F45216	A9F44216	A9F45316	A9F44316
20 A	A9F45120	A9F44120	A9F45220	A9F44220	A9F45320	A9F44320
25 A	A9F45125	A9F44125	A9F45225	A9F44225	A9F45325	A9F44325
32 A	A9F45132	A9F44132	A9F45232	A9F44232	A9F45332	A9F44332
40 A	A9F45140	A9F44140	A9F45240	A9F44240	A9F45340	A9F44340
50 A	A9F45150	A9F44150	A9F45250	A9F44250	A9F45350	A9F44350
63 A	A9F45163	A9F44163	A9F45263	A9F44263	A9F45363	A9F44363
Width in 9-mm modules	2		4		6	

Acti9 Protection and Isolation

General overview

iC60N circuit breakers (curve C, D) (cont.)

Double clip for dismounting
with comb busbar in place

Large circuit labelling area

Double clip for dismounting with comb busbar in place

Insulated terminals IP20

In

VISI-SAFE window
Fault tripping is indicated by a red mechanical indicator on the front face

General overview

iC60N circuit breakers (curve C, D) (cont.)

Connection

Technical data

Main characteristics
According to AS/NZS IEC 60947-2

Insulation voltage (Ui)
Pollution degree

Pollution degree	3
Rated impulse withstand voltage (Uimp)	6

Thermal tripping	Reference temperature	$50^{\circ} \mathrm{C}$
	Temperature derating	See module CA908007
Magnetic tripping	C curve	$8 \operatorname{In} \pm 20 \%$
Utilization category	A	
According to AS/NZS 60898-1		
Limitation class	3	
Rated making and breaking capacity of an individual pole (Icn1)	Icn1 = Icn	

Additional characteristics			
Breaking capacity under 1 pole with IT $380-415 \mathrm{~V}$ isolated neutral system (case of double fault)	40 A	4 kA	
	50/63 A	3 kA	
Degree of protection (IEC 60529)	Device only	IP20	
	Device in modular enclosure	IP40	Insulation class II
Endurance (O-C)	Electrical	10,000 cycles	
	Mechanical	20,000 cycles	
Overvoltage category (IEC 60364)		IV	
Operating temperature		$-35^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Storage temperature		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Tropicalization (IEC 60068-1)		Treatment 2 (rela	\% at $55^{\circ} \mathrm{C}$)

Weight (g) Dimensions (mm)

Circuit-breaker

Type	iC60N
$1 P$	125
$2 P$	250
$3 P$	375
$4 P$	500

Acti9 Protection and Isolation

General overview

iC60H miniature circuit breakers (curve B, C, D)

AS/NZS IEC 60947-2
 AS/NZS 60898-1

As per the above standards:

Alternating current (AC) 50/60 Hz

Breaking capacity (Icu) according to AS/NZS IEC 60947-2						Service breaking capacity (Ics)
		Voltage (Ue)				
Ph/Ph (2P, 3P)		12 to 133 V	220 to 240 V	380 to 415 V	440 V	
Ph/N (1P)		12 to 60 V	100 to 133 V	220 to 240 V	-	
Rating (In)	1 to 4 A	70 kA	70 kA	70 kA	50 kA	100% of Icu
	6 to 63 A	42 kA	30 kA	15 kA	10 kA	75% of Icu

Breaking capacity (Icn) according to AS/NZS 60898-1		
		Voltage (Ue)
Ph/Ph	400 to 415 V	
Ph/N	230 to 240 V	
Rating (In)	1 to 63 A	10000 A

Direct current (DC)

Breaking capacity (Icu) according to AS/NZS IEC 60947-2						Service breaking capacity (Ics)
	Voltage (Ue)					
Between +/-	12 to 60 V	$\leq 72 \mathrm{~V}$	$\leq 125 \mathrm{~V}$	$\leq 180 \mathrm{~V}$	$\leq 250 \mathrm{~V}$	
Number of poles	1 P		2P	3P	4P	
Rating (In)	20 kA	15 kA	15 kA	15 kA	15 kA	100\% of Icu

Catalog numbers
iC60H circuit breaker

Type	1P			2P		
	$$					
Rating (In)	Curve			Curve		
	B	C	$\mathrm{D}^{(1)}$	B	C	$D^{(1)}$
$1 \mathrm{~A}^{(1)}$	A9F53101	A9F54101	A9F55101	A9F53201	A9F54201	A9F55201
$2 \mathrm{~A}^{(1)}$	A9F53102	A9F54102	A9F55102	A9F53202	A9F54202	A9F55202
$4 \mathrm{~A}^{(1)}$	A9F53104	A9F54104	A9F55104	A9F53204	A9F54204	A9F55204
6 A	A9F53106	A9F54106	A9F55106	A9F53206	A9F54206	A9F55206
10 A	A9F53110	A9F54110	A9F55110	A9F53210	A9F54210	A9F55210
16 A	A9F53116	A9F54116	A9F55116	A9F53216	A9F54216	A9F55216
20 A	A9F53120	A9F54120	A9F55120	A9F53220	A9F54220	A9F55220
25 A	A9F53125	A9F54125	A9F55125	A9F53225	A9F54225	A9F55225
32 A	A9F53132	A9F54132	A9F55132	A9F53232	A9F54232	A9F55232
40 A	A9F53140	A9F54140	A9F55140	A9F53240	A9F54240	A9F55240
50 A	A9F53150	A9F54150	A9F55150	A9F53250	A9F54250	A9F55250
63 A	A9F53163	A9F54163	A9F55163	A9F53263	A9F54263	A9F55263
Width in 9-mm modules	2			4		

General overview

iC60H miniature circuit breakers (curve B, C, D) (cont.)

Catalog numbers
iC60H circuit breaker

Type	3P			4P		
Rating (In)	Curve			Curve		
	B	C	$\mathrm{D}^{(1)}$	B	C	$\mathrm{D}^{(1)}$
$1 \mathrm{~A}^{(1)}$	A9F53301	A9F54301	A9F55301	A9F53401	A9F54401	N/A
$2 \mathrm{~A}^{(1)}$	A9F53302	A9F54302	A9F55302	A9F53402	A9F54402	A9F55402
$4 \mathrm{~A}^{(1)}$	A9F53304	A9F54304	A9F55304	N/A	A9F54404	A9F55404
6 A	A9F53306	A9F54306	A9F55306	A9F53406	A9F54406	A9F55406
10 A	A9F53310	A9F54310	A9F55310	A9F53410	A9F54410	A9F55410
16 A	A9F53316	A9F54316	A9F55316	A9F53416	A9F54416	A9F55416
20 A	A9F53320	A9F54320	A9F55320	A9F53420	A9F54420	A9F55420
25 A	A9F53325	A9F54325	A9F55325	A9F53425	A9F54425	A9F55425
32 A	A9F53332	A9F54332	A9F55332	A9F53432	A9F54432	A9F55432
40 A	A9F53340	A9F54340	A9F55340	A9F53440	A9F54440	A9F55440
50 A	A9F53350	A9F54350	A9F55350	A9F53450	A9F54450	A9F55450
63 A	A9F53363	A9F54363	A9F55363	A9F53463	A9F54463	A9F55463
Width in 9-mm modules	6			8		

Acti9 Protection and Isolation

General overview

iC60H circuit breakers (curve B, C, D) (cont.)

Insulated terminals IP20

Double clip for dismounting with comb busbar in place

Double clip for dismounting with comb busbar in place

Large circuit labelling area

Positive contact indication

- Suitable for industrial isolation according to AS/NZS IEC 60947-2 standard.
- The presence of the green strip guarantees physical opening of the contacts and allows operations to be performed on the downstream circuit in complete safety

Increased product service life thanks to:

- overvoltage resistance by high level of industrial performances conception (pollution degree, rated impulse withstand voltage and insulation voltage),
- high performance limitation (see limitation curves),
- fast closing independent of the speed of actuation of the toggle.
- Remote indication, open/closed/tripped, by optional auxiliary contacts.
- Top or bottom electrical feeding.

General overview

iC60H miniature circuit breakers (curve B, C, D) (cont.)

Technical data

Main characteristics	
According to AS/NZS IEC 60947-2	500 VAC
Insulation voltage (Ui)	3
Pollution degree	Reference temperature
Rated impulse withstand voltage (Uimp)	$50^{\circ} \mathrm{CV}$
Thermal tripping	Temperature derating
	B curve
Magnetic tripping	C curve
	D curve
Utilization category	8 In $\pm 20 \%$
According to AS/NZS 60898-1	
Limitation class	$12 \mathrm{In} \pm 20 \%$
Rated making and breaking capacity of an individual pole (Icn1)	Icn $1=\operatorname{lcn}$

Additional characteristics

Breaking capacity under 1 pole with IT $380-415 \mathrm{~V}$ isolated neutral system (case of double fault)	40 A	4 kA	
	50/63 A	3 kA	
Degree of protection (IEC 60529)	Device only	IP20	
	Device in modular enclosure	IP40	Insulation class II
Endurance (O-C)	Electrical	10,000 cycles	
	Mechanical	20,000 cycles	
Overvoltage category (IEC 60364)		IV	
Operating temperature		$-35^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Storage temperature		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Tropicalization (IEC 60068-1)		Treatment 2 (relative humidity 95% at $55^{\circ} \mathrm{C}$)	

Weight (g) Dimensions (mm)

Circuit-breaker

Type	IC60N
$1 P$	125
$2 P$	250
$3 P$	375
$4 P$	500

Acti9 Protection and Isolation

General overview

iC60L miniature circuit breakers (curve B, C)

AS/NZS IEC 60947-2
AS/NZS 60898-1 up to 40 A
iC60L circuit breakers are multi-standard circuit breakers which combine the following functions:

- circuit protection against short-circuit currents,
- circuit protection against overload currents,
- suitable for industrial isolation according to AS/NZS IEC 60947-2, standard.
- fault tripping indication by a red mechanical indicator in circuit breaker front face.

Alternating current (AC) $50 / 60 \mathrm{~Hz}$

Breaking capacity (Icu) according to AS/NZS IEC 60947-2						Service breaking capacity (lcs)
		Voltage (Ue)				
Ph/Ph (2P, 3P, 4P)		12 to 133 V	220 to 240 V	380 to 415 V	440 V	
Ph/N (1P)		12 to 60 V	100 to 133 V	220 to 240 V	-	
Rating (In)	1 to 4 A	100 kA	100 kA	100 kA	70 kA	100% of Icu
	6 to 63 A	70 kA	50 kA	25 kA	20 kA	50% of Icu ${ }^{(1)}$
	$32 / 40 \mathrm{~A}$	70 kA	36 kA	20 kA	15 kA	50% of Icu
	$50 / 63$ A	70 kA	30 kA	15 kA	10 kA	50% of Icu

Breaking capacity (lcn) according to AS/NZS 60898-1		
		Voltage (Ue)
Ph/Ph	400 to 415 V	
Ph/N	230 to 240 V	
Rating (In)	$\mathbf{1}$ to 40 A	15000 A

Direct current (DC)

Breaking capacity (lcu) according to AS/NZS IEC 60947-2						Service breaking capacity (lcs)
	Voltage (Ue)					
Between +/-	12 to 60 V	$\leq 72 \mathrm{~V}$	$\leq 125 \mathrm{~V}$	$\leq 180 \mathrm{~V}$	$\leq 250 \mathrm{~V}$	
Number of poles	1P		2P	3P	4 P	
Rating (In) 0.5 to 63 A	25 kA	20 kA	20 kA	20 kA	20 kA	100\% of Icu

Catalog numbers
iC60L circuit breaker

Type		$2 P$	A	

General overview

iC60L circuit breakers (curve B, C) (cont.)

Catalog numbers

iC60L circuit breaker

Type	3P		4P	
Rating (In)	Curve		Curve	
	B	C	B	C
1 A	A9F93301	A9F94301	A9F93401	A9F94401
2 A	A9F93302	A9F94302	A9F93402	A9F94402
4 A	A9F93304	A9F94304	A9F93404	A9F94404
6 A	A9F93306	A9F94306	A9F93406	A9F94406
10 A	A9F93310	A9F94310	A9F93410	A9F94410
16 A	A9F93316	A9F94316	A9F93416	A9F94416
20 A	A9F93320	A9F94320	A9F93420	A9F94420
25 A	A9F93325	A9F94325	A9F93425	A9F94425
32 A	A9F93332	A9F94332	A9F93432	A9F94432
40 A	A9F93340	A9F94340	A9F93440	A9F94440
50 A	A9F93350	A9F94350	A9F93450	A9F94450
63 A	A9F93363	A9F94363	A9F93463	A9F94463
Width in 9-mm modules	6		8	

Increased product service life thanks to:

- overvoltage resistance by high level of industrial performances conception (pollution degree, rated impulse withstand voltage and insulation voltage),
- high performance limitation (see limitation curves),
- fast closing independent of the speed of actuation of the toggle.
- Remote indication, open/closed/tripped, by optional auxiliary contacts.
- Top or bottom electrical feeding.

VISI-SAFE window
Fault tripping is indicated by a red mechanical indicator on the front face

Positive contact indication

- Suitable for industrial isolation according to AS/ NZS IEC 60947-2 standard.
- The presence of the green strip guarantees physical opening of the contacts and allows operations to be performed on the downstream circuit in complete safety

Acti9 Protection and Isolation

General overview

iC60L circuit breakers (curve B, C) (cont.)

				Without ac	cessory	With access	ries		
		Rating	Tightening	Copper cal	les	$50 \mathrm{~mm}^{2}$ Al	Screw-on	Multi-cab	s terminal
			torque	Rigid	Flexible or with ferrule	terminal	connection for ring terminal	Rigid	Flexible
$\stackrel{\circ}{\circ}$ $\stackrel{\circ}{\circ}$ $\stackrel{0}{0}$					$\sum_{i} \nabla$	$\int_{\pi}^{A I}$		\int_{π}^{50}	
		0.5 to 25 A	2 N.m	1 to $25 \mathrm{~mm}^{2}$	1 to $16 \mathrm{~mm}^{2}$	-	$\varnothing 5 \mathrm{~mm}$	-	-
		32 to 63 A	3.5 N.m	1 to $35 \mathrm{~mm}^{2}$	1 to $25 \mathrm{~mm}^{2}$	$50 \mathrm{~mm}^{2}$		$3 \times 16 \mathrm{~mm}^{2}$	$3 \times 10 \mathrm{~mm}^{2}$

Technical data

Main characteristics
According to AS/NZS IEC 60947-2

Insulation voltage (Ui)	500 VAC
Pollution degree	3
Rated impulse withstand voltage (Uimp)	
Thermal tripping	Reference temperature
	Temperature derating
Magnetic tripping	B curve
	C curve
Utilization category	See module CA908007
According to AS/NZS $\mathbf{6 0 8 9 8 - 1}$	$4 \ln \pm 20 \%$

Rated making and breaking capacity of an individual pole (Icn1) Icn1 = Icn

Additional characteristics			
Breaking capacity under 1 pole with IT $380-415 \mathrm{~V}$ isolated neutral system (case of double fault)	40 A	4 kA	
	50/63 A	3 kA	
Degree of protection (IEC 60529)	Device only	IP20	
	Device in modular enclosure	IP40	Insulation class II
Endurance (O-C)	Electrical	10,000 cycles	
	Mechanical	20,000 cycles	
Overvoltage category (IEC 60364)		IV	
Operating temperature		$-35^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Storage temperature		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Tropicalization (IEC 60068-1)		Treatment 2 (relative humidity 95% at $55^{\circ} \mathrm{C}$)	

Weight (g)
Dimensions (mm)

Circuit-breaker

Type	iC60N
$1 P$	125
$2 P$	250
$3 P$	375
$4 P$	500

Accessories

Accessorisation / Auxiliarisation iC60

Connection accessories

1	$50 \mathrm{~mm}^{2} \mathrm{Al}$ terminal		27060
Mounting accessories			
2	Sealable terminal shields for top and bottom connection	1 P (set of 2)	A9A26975
		2 P (set of 2)	A9A26976
		3P	$1 P+2 P$
		4P	$2 P+2 P$
3	Screw shields	4P (set of 20)	A9A26981
4	Screw shields Vigi iC60	(set of 12)	A9A26982
5	9 mm spacer		A9A27062
6	Padlocking device	(set of 10)	A9A26970
7	Rotary handle	Black handle	A9A27005
		Red handle	A9A27006
8	Interpole barrier	(set of 10)	A9A27001

- Tripping devices must be installed first.

If two tripping devices are used: the iMN must be installed first
Indication auxiliaries: respect specified position for SD functions.

Assembly rule
The mounting order and the number for the various auxiliaries must be complied with.
The tripping auxiliaries iMN, iMX, iMSU...) should be mounted first 1 as close as possible to the main device.
Then at the left, the indicating auxiliaries (iOF, iSD) should be mounted 2 then 3 complying with the following association table.

Indicating auxiliaries		Tripping auxiliaries	Device	Vigi ic60
(3)	$+2$	$+1$		
1 iOF	1 (isd or iOF)	2 (iMN, iMNs, iMNx or iMX, iMX+OF or iMSU)	iC60 Disbo	Vigi ic60
-	-	3 iMSU		

Acti9 Protection and Isolation

General overview

C60H-DC miniature circuit breakers (curve C)

DC circuit supplementary protectors for feeders / distribution systems

AS/NZS IEC 60947-2

Breaking capacity (Icu) according to AS/NZS IEC 60947-2						Service breaking capacity (Ics)
Type	Voltage					
1P	110 V	220 V	250 V	440 V	500 V	
Rating (In) 1 to 63 A	20 kA	10 kA	6 kA	-	-	75\% Icu
2P (in series)	110 V	220 V	250 V	440 V	500 V	
Rating (In) 1 to 63 A	-	20 kA	20 kA	10 kA	6 kA	75\% Icu

Catalog numbers
C60H-DC

General overview

C60H-DC circuit breakers (curve C) (cont.)

DC circuit supplementary protectors for feeders / distribution systems
Connection

$\begin{aligned} & \text { ल్ల్ల } \\ & \stackrel{\sim}{0} \\ & \stackrel{0}{0} \end{aligned}$		Multi-cables Connection					
	114 mm			Without accessory			
		Rating	Tightening torque	2 Copper cables		3 Multi-cables / Different wires	
				Rigid / Stranded	Flexible or with ferrule	Flexible / Stranded	Flexible / Stranded / Rigid
					$\pi \square$		
		y 25 A	2.5 N.m	$2 \times 1 \mathrm{~mm}^{2}$ to $2 \times 10 \mathrm{~m}$		$3 \times 1 \mathrm{~mm}^{2}$	$2 \times 2.5 \mathrm{~mm}^{2}+1 \times 1.5 \mathrm{~mm}^{2}$
		$>25 \mathrm{~A}$	3.5 N.m	$2 \times 1 \mathrm{~mm}^{2}$ to $2 \times 16 \mathrm{~m}$		$3 \times 4 \mathrm{~mm}^{2}$	$2 \times 10 \mathrm{~mm}^{2}+1 \times 6 \mathrm{~mm}^{2}$

Technical data

- Tripping curves: C curve - Overcurrent protection for any type of application.
- Positive break indication - the green strip indicates that all the poles are open and allows work to be carried out on the downstream circuit in complete safety.
- Failure to match polarity during connection may lead to a fire hazard and/or serious injury.
- The connection polarity must be observed (marked on the front panel).
- Use only with direct current.
- Suitable for isolation as defined in AS/NZS IEC 60947-2.

- Increase in the service life of the product: thanks to fast closure independent of the speed of action on the handle.
- Current limitation in the event of a fault: fast opening of the contacts prevents the loads from being destroyed in the event of a short-circuit.

Main characteristics		
According to AS/NZS IEC 60947-2		
Insulation voltage (Ui)		500 VAC
Rated voltage (Un)	1P	250 V DC
	2 P	500 V DC
Operating voltage (Ue)	1 P	24... 250 V DC
	2 P	24...500 V DC
Pollution degree		3
Rated impulse withstand voltage (Uimp) under frame		6 kV
Magnetic tripping (li)		$8.5 \ln (\pm 20 \%)$ (compatible with curve C)

Additional characteristics		
Degree of protection (IEC 60529)	Device in modular enclosure	IP40
Utilization category		A (no delay in accordance with IEC $60947-2$ standards)
Endurance (O-C)	Electrical	3,000 cycles (where L/R=2 ms)
	Mechanical	6,000 cycles where the circuit is resistive
Tropicalization (IEC 60068-1)		20,000 cycles
Operating temperature	Treatment 2 (relative humidity 95% at $55^{\circ} \mathrm{C}$)	
Storage temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	

Acti9 Protection and Isolation

General overview

C60H-DC circuit breakers (curve C) (cont.)

DC circuit supplementary protectors for feeders / distribution systems
Weight (g)
Circuit-breaker

Type	C6OH-DC
1 P	185 g
$2 P$	256 g

Dimensions (mm)

Details of minimum distance between circuit-breaker and earthed metal parts for circuit-breaker intended for use without enclosure.

Accessories

Accessories and Auxiliaries for C 60 H -DC devices

Connection accessories

1	$50 \mathrm{~mm}^{2} \mathrm{Al}$ terminal	27060

Mounting accessories

$\mathbf{2}$	Sealable terminal shield		
$\mathbf{3}$	Rotary handle	Switching sub-as- sembly	27046
	Disconnectable handle	27047	
$\mathbf{4}$	Screw shield	Fixed handle	27048
$\mathbf{5}$	Padlocking accessory (to be locked in the "open" position)	26970	

(1) Acomplete rotary handle consists of a circuit-breaker operating sub-assembly, cat. no. 27046, a handle cat. no. 27047 or a handle cat. no. 27048.
Electrical auxiliaries
Indication
2

5

$\mathbf{6}$	SD fault indicating switch	A9N26927
$\mathbf{7}$	OF+SD24 auxiliary contact	A9N26899
$\mathbf{8}$	OF open/closed contact	A9N26924
$\mathbf{9}$	OF+SD/OF auxiliary contact (OF+SD or OF+OF combination switch)	A9N26929

Tripping

$\mathbf{1 0}$	$M N, M N X, M N s$ undervoltage release
$\mathbf{1 1}$	$M X, M X+$ OF shunt release

- Tripping devices must be installed first.

If two tripping devices are used: the iMN must be installed first
Indication auxiliaries: respect specified position for SD functions.

Assembly rule

The mounting order and the number for the various auxiliaries must be complied with.
The tripping auxiliaries MN, MX...) should be mounted firs
as close as possible to the main device.
Then at the left, the indicating auxiliaries (OF, SD) should be mounted 2 then 3 complying with the following association table.

Indicating auxiliaries		Tripping auxiliaries	Device
3	+	+	1
1 (OF+SD/OF or OF+SD24)	1 OF+SD/OF	$1(\mathrm{MN}, \mathrm{MNx}, \mathrm{MNs}$ or MX, MX+OF)	
1 OF	$1(\mathrm{OF}+\mathrm{SD} / \mathrm{OF}$ or SD or OF)	$2(\mathrm{MN}, \mathrm{MNx}, \mathrm{MNs}$ or MX, MX+OF)	
-	1 OF+SD24	$2(\mathrm{MN}, \mathrm{MNx}, \mathrm{MNs}$ or MX, MX+OF)	

Acti9 Protection and Isolation

General Overview

C120N miniature circuit breakers (curve C)

 AS/NZS 60898-1
C120N circuit breakers are multistandard circuit breakers that combine the following functions:

- circuit protection against short-circuit currents,
- circuit protection against overload currents,
- suitability for isolation in the industrial sector to IEC 60947.2
- fault tripping and indication by adding auxiliaries.

Alternating current (AC) 50/60 Hz

Breaking capacity (Icu) to IEC 60947.2						Service breaking capacity (Ics)
Type		Voltage (V)				
1P		12 to 130 V	220 to 240 V	380 to 415 V	440 V	
Rating (In)	63 and 125 A	20 kA	10 kA	$3 \mathrm{kA}{ }^{(1)}$	-	75% of Icu
2P, 3P, 4P		12 to 130 V	220 to 240 V	380 to 415 V	440 V	
Rating (In)	63 and 125 A	-	20 kA	10 kA	6 kA	75% of Icu
Breaking capa	y (lon) accorc	AS/NZS 608		Servic	breaking	
Type		Voltage (V)		capa	(lcs)	
1P, 2P, 3P, 4P		230-240 V or	400-415 V			
Rating (In)	63 and 125 A	10000 A		75% of		

(1) One-pole breaking capacity in IT isolated neutral system (double fault)

Direct current (DC)

Breaking capacity (Icu) according to IEC 60947.2						Service breaking capacity (lcs)
	Voltage					
Between +/-	12 to 125 V	$\leq 144 \mathrm{~V}$	$\leq 250 \mathrm{~V}$	$\leq 375 \mathrm{~V}$	$\leq 500 \mathrm{~V}$	
Number of poles	1 P		2P	3P	4 P	
Rating (In) 63 and 125 A	15 kA	10 kA	10 kA	10 kA	10 kA	100\% Icu

Catalog numbers
C120N circuit breaker

Type	1P	2P	3P	4P
	$\stackrel{1}{*}$			
Auxiliaries	Remote indication and tripping, refer page C96			
Vigi C120	Vigi C120 add-on residual current device,			
Rating (In)	Curve			
	C	C	C	C
63 A	A9N18356	A9N18360	A9N18364	A9N18371
80 A	A9N18357	A9N18361	A9N18365	A9N18372
100 A	A9N18358	A9N18362	A9N18367	A9N18374
125 A	A9N18359	A9N18363	A9N18369	A9N18376
Number of modules of 9 mm	3	6	9	12
Accessories	Refer to page C96			

General Overview

C 120 H miniature circuit breakers (curves B, C)

(AS/NZS 60898.1

C 120 H circuit breakers are multistandard circuit breakers that combine the following functions:

- circuit protection against short-circuit currents,
- circuit protection against overload currents,
- suitability for isolation in the industrial sector to IEC 60947.2
- fault tripping and indication by adding auxiliaries.

Alternating current (AC) $50 / 60 \mathrm{~Hz}$

Breaking capacity (Icu) to IEC 60947.2						Service breaking capacity (Ics)
Type		Voltage (V)				
1P		12 to 130 V	220 to 240 V	380 to 415 V	440 V	
Rating (In)	63 and 125 A	30 kA	15 kA	$4.5 \mathrm{kA}{ }^{(1)}$	-	75% of Icu
2P, 3P, 4P		12 to 130 V	220 to 240 V	380 to 415 V	440 V	
Rating (In)	63 and 125 A	-	30 kA	15 kA	10 kA	75% of Icu

\left.| Breaking capacity (Icn) according to AS/NZS 60898.1 | | |
| :--- | :--- | :--- |$\right)$| Service breaking |
| :--- |
| Type |
| capacity (Ics) |

(1) One-pole breaking capacity in IT isolated neutral system (double fault),

Direct current (DC)

Breaking capacity (Icu) according to AS/NZS IEC 60947-2						Service breaking capacity (lcs)
	Voltage					
Between +/-	12 to 125 V	$\leq 144 \mathrm{~V}$	$\leq 250 \mathrm{~V}$	$\leq 375 \mathrm{~V}$	$\leq 500 \mathrm{~V}$	
Number of poles	1P		2P	3P	4 P	
Rating (In) 63 and 125 A	20 kA	15 kA	15 kA	15 kA	15 kA	100\% Icu

Catalog numbers
C 120 H circuit breaker

Type	1P		2P		3P		4P	
	${ }_{5}^{1}$							
Auxiliaries	Remote indication and tripping, refer to page C-96							
Vigi C120	Vigi C120 add-on residual current device,							
Rating (In)	Curve							
	B	C	B	C	B	C	B	C
63 A	A9N18401	A9N18445	A9N18412	A9N18456	A9N18423	A9N18467	A9N18434	A9N18478
80 A	A9N18402	A9N18446	A9N18413	A9N18457	A9N18424	A9N18468	A9N18435	A9N18479
100 A	A9N18403	A9N18447	A9N18414	A9N18458	A9N18425	A9N18469	A9N18436	A9N18480
125 A	A9N18404	A9N18448	A9N18415	A9N18459	A9N18426	A9N18470	A9N18437	A9N18481
Number of modules of 9 mm	3		6		9		12	
Accessories	Refer to page C-96							

Acti9 Protection and Isolation

General overview

C120 miniature circuit breakers

Longer product service life thanks to:

- good overvoltage withstand capacity: products designed to offer a high industrial
- performance level (degree of pollution, rated impulse withstand voltage and insulation voltage).
- high limitation performances (see limitation curves).
- fast closure independent of toggle operating speed.
- Remote indication of the open/closed/tripped state by auxiliary contacts (optional).
- Power supply from above or below.

General overview

C120 miniature circuit breakers (cont.)

Connection

		Without ac	essory	With acces	ries		
Rating	Tightening torque	Copper cables		$50 \mathrm{~mm}^{2}$ Al terminal	Screw-on connection for ring terminal ${ }^{(1)}$	Multi-cables terminal	
		Rigid	Flexible or with ferrule			Rigid	Flexible
				$\int_{\pi}^{A I}$			
63 and125A	3.5 N.m	1 to $50 \mathrm{~mm}^{2}$	1.5 to $35 \mathrm{~mm}^{2}$	16-50 mm	$\varnothing 5 \mathrm{~mm}$	$3 \times 16 \mathrm{~mm}^{2}$	$3 \times 10 \mathrm{~mm}^{2}$

(1) For lugs up to 63 A , front or rear access.

Technical data

Main characteristics
 According to IEC 60947-2

Insulation voltage (Ui)	500 VAC	
Pollution degree	3	
Rated impulse withstand voltage (Uimp)	6 kV	
Thermal tripping	Reference temperature	$50^{\circ} \mathrm{C}$
Magnetic tripping	B curve	$4 \mathrm{In} \pm 20 \%$
	C curve	$8 \mathrm{ln} \pm 20 \%$
Limitation class		3

Additional characteristics		
Degree of protection (IEC 60529)	Device only	IP20
	Device in modular enclosure	IP40
Endurance (O-C)	Electrical	5,000 cycles $(\mathrm{O}-\mathrm{C})$
	Mechanical	20,000 cycles
Operating temperature	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Storage temperature	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	
Tropicalization (IEC 60068-1)	Treatment 2 (relative humidity 95% at $55^{\circ} \mathrm{C}$)	
According to AS/NZS 60898-1		
Rated making and breaking capacity of an individual pole (Icn1)	Icn1 $=$ Icn	

Weight (g)

Circuit-breaker

Acti9 Protection and Isolation

Accessories

Accessories and Auxiliaries for C120, Vigi C120 devices

Connection accessories
$150 \mathrm{~mm}^{2}$ Al terminal 27060

Mounting accessories

$\mathbf{2}$	Sealable terminal shields for top and bottom connection	1P (set of 2)	18526
$\mathbf{3}$	Interpole barrier	(set of 10)	27001
$\mathbf{4}$	Screw shields	4P (set of 2)	18527
$\mathbf{5}$	Padlocking device		27145
$\mathbf{6}$	Rotary handle	Fixed	27048
$\mathbf{7}$	Operating sub-assembly ${ }^{(1)}$	27046	

(1) A complete rotary handle consists of a circuit-breaker operating sub-assembly, cat. no.

Electrical auxiliaries
Indication

$\mathbf{8}$	SD fault indicating contact	2 to 100 mA	A9N26917
	100 mA to 6 A	A9N26907	
$\mathbf{9}$	OF+SD24 auxiliary contact	A9N26899	
$\mathbf{1 0}$	OF open/close auxiliary contact	2 to 100 mA	A9N26914
	OF+SD/OF auxiliary contact (OF+SD or OF+OF combination switch)	A9N26909	
$\mathbf{1 1 0 0}$			

\qquad

Assembly rule

The mounting order and the number for the various auxiliaries must be complied with.
The tripping auxiliaries MN, MX, MSU...) should be mounted first
1 as close as possible to the main device.
Then at the left, the indicating auxiliaries (OF, SD) should be mounted 2 then 3 complying with the following association table.

Indicating auxiliaries		Tripping auxiliaries	Device	Vigi C120
3	$+2$	$+1$		
1 (OF+SD/OF or OF+SD24)	1 OF+SD/OF	1 (MN, MNX, MNs or MX, MX+OF or MSU)	C120	Vigi C120
1 OF	1 (OF+SD/OF or SD or OF)	2 (MN, MNx, MNs or MX, MX+OF or MSU)		
-	1 OF+SD24	2 (MN, MNx, MNs or MX, MX+OF or MSU)		
-	-	3 MSU		

General Overview

STI isolatable fuse-carriers

Tertiary sector, Industry

STI
 AS/NZS IEC 60947-3,
 IEC 60269-2

CC
IEC 60269-1,
IEC 60269-2

- The STI isolatable fuse-carriers provide overload and short-circuit protection. b They are used for tertiary and industrial applications requiring a high breaking capacity.
- They perform the isolation function and must not be used as switches.
- To be equiped with aM or $\mathrm{gG}(\mathrm{gL}-\mathrm{gl})$ type fuse cartridge without striker, with or without fuse blowing indicator. The general purpose fuse (gG fuse) provides overload and short-circuit protection. The fuse for motor application (aM fuse) only provides short-circuit protection. It is used for protection of loads with a high peak current (motors, transformer primaries, etc.).
Catalog numbers
STI fuse holder

Type	1 P	1P+N	2P	3P	$3 \mathrm{P}+\mathrm{N}$
	${ }^{1}$		$\left.\right\|_{2} ^{1}$		
$10.3 \times 38 \mathrm{~mm}$	A9N15636	A9N15646	A9N15651	A9N15656	A9N15658
Number of modules of 9 mm	2	2	4	6	6

Acti9 Protection and Isolation

General overview

STI isolatable fuse-carriers (cont.)

Tertiary sector, Industry

1P+N, 3P+N

- Phase opening causes compulsory opening of the neutral
- The phase opens before the neutral on isolation and closes after the neutral on circuit closing
- Small dimensions:
- $1 P+N$ in 18 mm
- $3 P+N$ in 54 mm

230 V neon indicator light

(Option)

- Indicates fuse blowing (off in normal operation and lit red after fuse blowing)
- 400 V maxi

- Used to identify:
- either on the front face
- or on the downstream terminals

Connection

	Without accessory			With accessories
Tightening torque	Copper cables			Screw-on connection for ring terminal
	Rigid	Flexible with ferrule	Flexible without ferrule	
			3	
2 N.m	$\begin{aligned} & 0.75 \text { to } 10 \mathrm{~mm}^{2} \\ & 2 \times 0.75 \mathrm{~mm}^{2} \text { to } \\ & 2 \times 4 \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 0.5 \text { to } 6 \mathrm{~mm}^{2} \\ & 2 \times 0.5 \mathrm{~mm}^{2} \text { to } \\ & 2 \times 4 \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1 \text { to } 6 \mathrm{~mm}^{2} \\ & 2 \times 1 \mathrm{~mm}^{2} \text { to } \\ & 2 \times 4 \mathrm{~mm}^{2} \end{aligned}$	Ø 5mm

General overview

STI isolatable fuse-carriers (cont.)

Tertiary sector, Industry

Technical data

Main characteristics	500 VAC
Insulation voltage (Ui)	8 kA
Breaking capacity according to AS/NZS IEC $60947-2 \leq 400 \mathrm{~V}$	3
Pollution degree	$50 / 60 \mathrm{~Hz}$
Operating frequency	

Dimensions (mm)

STI

aM, gG fuse cartridge

Type	A	B	C
$10.3 \times 38 \mathrm{~mm}$	10.3	38	10.5

Acti9 Protection and Isolation

General Overview

Choice of Earth Leakage Protection Devices

The sensitivity of an earth leakage protection device depends mainly on the function it has to perform:

- protection from electric shock by direct contact
- protection from electric shock by indirect contact
- protection from fire due to current leakage.

The following table gives a reminder of:

- the circuits that must be protected against these various risks (obligation or recommendation)
- the type of earth leakage protection device to be used in each case, its sensitivity, and its location in the distribution diagram.

Type of protection

Obligations	Sensitivity $(1 \mathrm{An})$		
National standard AS/NZS:3000	$30 \mathrm{~mA}\left(^{*}\right)$	100 mA to 3000 mA	300 mA (or 500 mA$)$

Protection from electric shock by direct contact
$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\circ}{\sim}} \stackrel{\sim}{\circ}$

- Basic protection shall be pro-	Setup in final distribution
vided using insulation, barriers,	switchboard
enclosures, obstacles or by	Residual current device pro-
placing out of reach.	tecting a circuit
- Additional protection shall be	Residual current circuit breaker
provided by a residual current device installed on circuits, socket outlets, lighting points and hand held equipment.	
protecting a group of circuits	

Protection from electric shock by indirect contact

	Shall be provided through means of: - A system of earthing - An automatic disconnection device residual current device or circuit breaker that will disconnect under earth fault conditions	Setup in final distribution switchboard - Residual current circuit breaker or device, on incoming feeder Setup in subdistribution board or main switchboard - Residual current device protecting a circuit - Residual current device or circuit breaker protecting a group of circuits - On incoming feeder: residual current circuit breaker or device	
Protection from fire due to current leakage			
$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\sim}{\sim} \\ & \stackrel{y y y}{\circ} \\ & \text { Ny } \end{aligned}$	Protection should be provided to prevent the risk of fire initiated or propagated by components of the electrical installation. If protection against initiation of fire is required, then a residual current device should be installed.		Setup in final distribution switchboard - Residual current circuit breaker or device, on incoming feeder Setup in subdistribution board or main switchboard - Residual current device protecting each circuit to a high-risk zone - Residual current device or circuit breaker protecting a group of circuits - On incoming feeder: residual current circuit breaker or device

[^0]
Nuisance tripping

Consequences: nuisance tripping

When the sum of the natural earth leakages reaches $\sim 30 \%$ of the residual current devices rated sensitivity (e.g. 10mA for a 30mA RCD), any surge (e.g. caused by switching) may cause nuisance tripping of the RCD.

Solutions:

- Dividing up the circuits

Dividing up the circuits reduces the natural leakage on a single-phase residual current device. The figure of a maximum of 6 loads is usually suggested by assuming in the worst case, a leakage of 1.5 mA for each load, or a total leakage of 9 mA or 30% of the sensitivity threshold for a 30 mA residual current device.

- Using SI residual current devices

Thanks to its improved immunity from transient surge currents, the "si" range is specially recommended for installations with computer equipment. It means that a greater number of machines may be installed (a maximum of around 12 machines) with the same residual current device, before nuisance tripping will occur.

Interference immunity

Schneider Electric provides various equipment technologies capable of overcoming the consequences of interference of all kinds.

Operating conditions			Examples	Types			
				$\stackrel{A C(1)}{\sim}$	$\stackrel{A}{\sim}$	$\stackrel{\mathrm{S}}{\sim}$	$\text { ~~ }{ }^{8}$
Loads							
	With no special characteristics		- General purpose power sockets - Incandescent lighting - Household appliances: microwave oven, dishwasher, clothes dryer - Electric heating, water heater	-	-	-	\bullet
	Including a rectifier	Single phase	- Household appliances: induction cooking appliances, washing machines (variable speed) - Single-phase variable speed drives	-	-	-	-
		Three phase	- Three-phase variable speed industrial drives - Three-phase uninterruptible power supplies	-	-	-	-
	Generating high-frequency interference (current peaks, harmonics)		- Fluorescent lighting powered by extra low voltage transformer, by electronic ballast - Variable luminosity lighting - Powerful IT equipment - Single-phase variable speed industrial drives - Air conditioning - Telecommunications equipment - Capacitor banks	-	-	-	-
	Including an in the power	i-harmonic filter ply	- Microcomputer systems - Computer peripherals (printers, scanners, etc.)	-	-	\bullet	-

[^1]
Acti9 Protection and Isolation

General Overview

Operating conditions	Examples	Types			
		$\sim \mathrm{AC}^{(1)}$	$\stackrel{A}{\sim}$	$\stackrel{\text { SI }}{\sim}$	$\sim n^{8}$

Electrical environment

$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{N}{\circ} \end{aligned}$		Vicinity of equipment generating Vicinity of equipment generating				High-powered switching devices Reactive energy compensation banks	-	-	-	-
		Circuits powered by an uninterruptible power supply				Backed-up networks	-	-	-	-
		"Isolated neutral" (IT) earthing system					-	-	-	-
		Major risk of lightning strikes				Buildings protected by a lightning protection system Mountainous or humid regions Regions with high keraunic level	-	-	-	-
Atmosphere										
		Ambient temperature which could be less than $-5^{\circ} \mathrm{C}$					-	-	-	-
$\begin{aligned} & \stackrel{\text { I }}{\stackrel{N}{N}} \\ & \stackrel{N}{0} \end{aligned}$	78	Presence of corrosive agents (AF2 to AF4) or dust				Indoor swimming pools Yacht harbours, marinas, camping grounds Water treatment Chemical industries, heavy industries, paper mills Mines and cellars, road tunnels Markets, stock raising, food processing industries	-	-	- 2	-

(1) According to amendment 2 of the wiring rules AS/NZS 3000, Type AC RCD shall not be used for the following applications from 30 April 2023: - Domestic and Residential, all final subcircuits

- Non-domestic and non-residential socket outlets and lighting, directly connected hand-held equipment and increased risk circuits up to 32A.

Recognising Type A RCDs as accepted general usage, Schneider doesn't carry any Type AC RCD in the Acti9 offer of RCCBs and RCBOs. (2) SiE for C120 and NG125 circuit breakers.

Discrimination

Residual current devices of average sensitivity (100 mA and more) are available in a selective (s) and delayed (R) version. This option ensures that, in the event of an earth fault downstream of the installation, only the defective part is switched off. The table below shows (in green) which upstream/downstream equipment combinations provide this discrimination.

Sensitivity (mA) - Downstream			Sensitivity (mA) - Upstream												
			Instantaneous			Selective s								Delayed R	
			30	100	300	500	1000	3000	100	300	500	1000	3000	1000	3000
	Instantaneous	30	-	-	-	-	-	-							
-		100	-	-	-	-	-	-	-						
Sor R		300	-	-	-	-	-	-	-	-	-				
D		500	-	-	-	-	-	-	-	-	-	-		-	
		1000	-	-	-	-	-	-	-	-	-	-		-	
		3000	-	-	-	-	-	-	-	-	-	-	-	-	-
	Selective s	100	-	-	-	-	-	-	-	-	-	-	-		
		300	-	-	-	-	-	-	-	-	-	-	-	-	
		500	-	-	-	-	-	-	-	-	-	-	-	-	
		1000	-	-	-	-	-	-	-	-	-	-	-	-	
		3000	-	-	-	-	-	-	-	-	-	-	-	-	-
	Delayed R	1000						-	-	-	-	-	-	-	-
		3000						-	-	-	-	-	-	-	-

General Overview \& Reference Numbers

ilD residual current circuit breakers (A \& SI types)

- The iID residual current circuit breakers provide:
- protection of persons against electric shock by direct contact ($\leq 30 \mathrm{~mA}$)
- protection of persons against electric shock by indirect contact ($\geq 300 \mathrm{~mA}$), - protection of installations against the risk of fire (300 mA)

The $\mathbf{S I}$ type provides increased immunity from electrical interference and polluted or corrosive environments.

ID residual current circuit breakers for 230/400 V network

Acti9 Protection and Isolation

General Overview

iID residual current circuit breakers（A，SI types）

＊See module CA907000

Technical Data

Indifferent position of installation．

Weight（g）

Residual current circuit breakers	
Type	ilD
$2 P$	210
4 P	370

Main characteristics			
Insulation voltage（Ui）			500 V
Pollution degree			3
Rated impulse withstand voltage（Uimp）			6 kV
According to AS／NZS 61008－1			
Making and breaking capacity（ Im / I ¢m）			1500 A
Surge current withstand（ $8 / 20 \mu \mathrm{~s}$ ） without tripping	A types（no selective s）		250 Â
	A types（selective s）		3 kA
	SI type		3 kA
Conditional rated short circuit current （ $\operatorname{Inc} / / \Delta \mathrm{c}$ ）	With iC60N／H／L		Equal to breaking capacity of iC60
	With fuse	$100 \mathrm{~A}$	10，000 A
Behaviour in case of voltage drop			Residual current protection down to 0 V according to IEC／EN 61008－1 § 3．3．4
Additional characteristics			
Degree of protection	Device only		IP20
	Device in modular enclosure		IP40 Insulation class II
Endurance（O－C）	Electrical（AC1）	16 to 63 A	15，000 cycles
		80 to 100 A	10，000 cycles
	Mechanical		20，000 cycles
Operating temperature	A and S／types	类炎花	$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage temperature			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Dimensions（mm）

General Overview
ilD residual current circuit breakers (A, SI types) (cont).

SI type

The SI type provides increased immunity from electrical interference and polluted or corrosive environments.

Acti9 Protection and Isolation

General Overview \& Reference Numbers

ilD B-SI type residual current circuit breakers (RCCB)

© AS/NZS 61008-2-1, IEC/EN 62423, IEC 61543

As per the above standards:

- The Acti9 iID B-SI type residual current circuit breakers provide:
- protection of persons against electric shock by direct contact (30 mA),
- protection of installations against the risk of fire (300 mA or 500 mA).

B-SI type $\underset{\sim}{\sim}$

The Acti9 iID B-SI type residual current circuit breakers provide:

- protection in the event of a continuous earth fault current on networks generated by:
- controllers and variable speed drives,
- battery chargers and inverters, such as used in photovoltaic application,
- backed-up power supplies.

- They include protection against earth fault currents:
- sinusoidal AC residual currents (AC type),
- pulsed DC residual currents (A type),
- multi frequency residual current (F type).
- The use of Acti9 iID B-SI type residual current circuit breaker can be made mandatory, according to standards applicable in country.
- For applications using 3-poles drives, such as:
- crane,
- lift,
- HVAC,
- pumping system
B type is recommended.
For more information, see earth leakage protection guide CA908066E
- The Acti9 iID B-SI type works optimally with the variable speed drives manufactured by Schneider Electric, even with a long cable length between motor and variable speed drive (up to 50 m).
- SI technology is embedded in Acti9 iID B-SI type residual current circuit breaker, providing increased immunity from electrical interference and polluted environments.
- The Acti9 iID B-SI type is compatible with Schneider Electric AC and A types wired in parallel or in series in the installation, following coordination tables (refer to earth leakage protection guide CA908066E).

Acti9 ild B-SI type residual current circuit breakers								
Type				B-SI				Width in 9 mm module
2P			Sensitivity	30 mA	300 mA	300 mAs	500 mA	
N ${ }^{1}$	Rating	25 A		A9Z61225		-	-	8
		40 A		A9Z61240				
\rightarrow		63 A		A9Z61263		-	-	
Voltage rating (Ue)				230-240V				
Operating frequency				50 Hz				
4P			Sensitivity	30 mA	300 mA	300 mAs	500 mA	
$N \quad l^{1} \downarrow^{3} \downarrow^{5}$	Rating	40 A		A9Z61440				8
		63A		A9Z61463	A9Z64463	A9Z65463	A9Z66463	
		80A		A9Z61480				
Voltage rating (Ue)				$400-415 \mathrm{~V}$				
Operating frequency				50 Hz				

General Overview \& Reference Numbers

ilD B type EV residual current circuit breakers (RCCB) for Electric Vehicle

AS/NZS 61008-2-1, IEC/EN 62423, IEC 61543, VDE 0664

As per the above standards:

- The Acti9 iID B type EV residual current circuit breakers provide:
- protection of persons against electric shock by direct contact (30 mA),
- protection of persons against electric shock by indirect contact,
- protection of installations against the risk of fire.

B type $\approx \sim$

The Acti9 iID B type EV residual current circuit breakers provide:

- protection in the event of a continuous earth fault current on networks generated by electric car charging station.
- The use of Acti9 iID B type EV residual current circuit breaker can be made mandatory, according to standards applicable in country.
- The Acti9 iID B type EV is compatible with Schneider Electric AC and A types wired in parallel or in series in the installation, following coordination tables (refer to earth leakage protection guide CA908066E).

Acti9 iID B type EV residual current circuit breakers					
Type			B $\sim \sim \sim$	Width in 9 mm module	
2P		Sensitivity	30 mA		
N\| ${ }^{1}$	Rating	25A	A9Z51225	8	
		40A	A9Z51240		
Voltage rating (Ue)			230-240 V		
Operating frequency			50 Hz		
4P		Sensitivity	30 mA		
N $\\|^{1} \downarrow^{3} \quad 15$	Rating	40A	A9Z51440	8	
		63 A	A9Z51463		
Voltage rating (Ue)			$400-415 \mathrm{~V}$		
Operating frequency			50 Hz		

Acti9 Protection and Isolation

General Overview

iID B type EV and iID B-SI type residual current circuit breakers (RCCB)

Technical Data

Clip on DIN rail 35 mm .

Indifferent position of installation.

Electrical characteristics			
Insulation voltage (Ui)		2P	250 V
		4P	500 V
Pollution degree			3
Rated impulse withstand voltage (Uimp)			6 kV
According to AS/NZS 61008-2-1			
Making and breaking capacity (Im/IDm)			1500 A
Surge current withstand $(8 / 20 \mu \mathrm{~s})$ without tripping	No selective s		3 kA
	Selective s		5 kA
Conditional rated short circuit current (Inc/IDc)	With 100 A gG fuse		10,000 A
Additional characteristics			
Degree of protection (IEC 60529)	Device only		IP20
	Device in modular enclosure		IP40
			Insulation class II
Endurance (O-C)	Electrical	y 63 A	15,000 cycles
		$>63 \mathrm{~A}$	10,000 cycles
	Mechanical		20,000 cycles
Range of test button operating voltage	30 mA	2P	180... 270 V AC
		4P	300... 450 V AC
	300, 500 mA	2P	140... 330 V AC
		4P	220... 450 V AC
Impulse withstand according to IEC 60068-2-27			15 g
Vibration withstand according to IEC 60068-2-6			3 g
Electromagnetic compatibility			According to IEC 61543
Operating temperature			$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage temperature			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Dissipated power			Module CA908009

Dielectric test

d To perform the dielectric test, disconnect terminals:
4P: 1, 3, 5 and $2,4,6$
2P: 1 and 2

Residual current circuit breakers	
Type	iID
$2 P$	350
$4 P$	415

Dimensions (mm)

$$
<\text { 国 }>
$$

General Overview

iID B type EV and iID B-SI type residual current circuit breakers (RCCB) (cont.)

Connection

Accessories: module CA907000 and CA907001

Acti9 Protection and Isolation

General Overview \& Reference Numbers

Vigi iC60 add-on residual current devices (A type)

- Combined with iC60 circuit breaker, the Acti9 Vigi iC60 provide:
- protection of persons against electric shock by direct contact (30 mA),
- protection of installations against the risk of fire (300 mA).
- With flexible neutral wire.

Vigi iC60 add-on residual current devices for 230/400 V network					
Type Auxiliaries		A \square Without auxiliaries			Width in 9 mm modules
2P	Sensitivity	30 mA		300 mA	
	63A	A9V02663		A9V06663	4
4P	Sensitivity	30 mA		300 mA	
 Rating	63A	A9V02763	-	A9V06763	7

Voltage rating (Ue)	2 P	$230-240 \mathrm{~V}$
	4 P	$400-415 \mathrm{~V}$
Operating frequency		$50 / 60 \mathrm{~Hz}$
Accessories	Refer to catalogue page $\mathbf{C - 3 7}$	

General Overview \& Reference Numbers

Vigi iC60 add-on residual current devices (A type)

- Combined with iC60 circuit breaker, the Vigi iC60 provide:
- protection of persons against electric shock by direct contact (30 mA),
- protection of installations against the risk of fire (300 mA).

Vigi iC60 add-on residual current devices for 230/400 V network

Type		A				Width in 9 mm modules
Auxiliaries		Without auxiliaries				
2P	Sensitivity	30 mA	300 mA			
\%					-	3
	63A	A9V51263	A9V54263			

4

	Sensitivity	30 mA	300 mA			
Rating				-	-	6
	63A	A9V51363	A9V54363			

| Voltage rating (Ue) | 2 P | $230-240 \mathrm{~V}$ |
| :--- | :--- | :--- | :--- |
| | 3 P | $400-415 \mathrm{~V}$ |
| Operating frequency | $50 / 60 \mathrm{~Hz}$ | |
| Accessories | Refer to catalogue page C-37 | |

Acti9 Protection and Isolation

General Overview \& Reference Numbers

Vigi iC60 add-on residual current devices (A type) (cont.)

Association iC60N, H, L + Vigi iC60

iC60	Vigi iC60.40 A	Vigi iC60 63 A
01 A to 25 A	\square	\square
$32 \mathrm{~A}-40 \mathrm{~A}$	\square	\square
$50 \mathrm{~A}-63 \mathrm{~A}$	NO	\square

General Overview

Vigi iC60 add-on residual current devices (A type) (cont.)

Connection

Type	Rating	Tightening torque	Copper cables	
			Rigid	Flexible or with ferrule
			皆	
Vigi iC60				

Main characteristics		
Insulation voltage (Ui)		500 V
Pollution degree		3
Rated impulse withstand voltage (Uimp)		6 kV
According to AS/NZS 61009-1		
Surge current withstand ($8 / 20 \mu \mathrm{~s}$) without tripping	A types (no selective s)	250 Â
	A types (selective s)	3 kA
Behaviour in case of voltage drop		Residual current protection down to 0 V according to IEC/ EN 61009-1 § 3.3.8
Additional characteristics		
Degree of protection	Device only	IP20
	Device in modular enclosure	IP40
		Insulation class II
Operating temperature	A and A-SI types	$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage temperature		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Weight (g)

Add-on residual current devices	
Type	Vigi iC60
$2 P$	165
$3 P$	210
$4 P$	245

Vigi iC60 40 and 63A

se.com/au

$$
<\text { 䍙 }>
$$

Acti9 Protection and Isolation

General Overview \& Reference Numbers

Vigi C120 add-on residual current devices (A type)

When a Vigi C120 device is combined with a C120 circuit breaker, it provides the following functions:

- protection of persons against electric shock by direct contact (30 mA)
- protection of installations against fire hazards (300 mA)

Vigi C120 add-on residual current devices				
Type Product		A \square Vigi C120		Width in 9 mm modules
Auxiliaries		Without auxiliary		
2P	Sensitivity	30 mA	300 mA	
		A9N18572	A9N18573	7
3P	Sensitivity	30 mA	300 mA	
		A9N18575	A9N18576	10
4P	Sensitivity	30 mA	300 mA	
		A9N18578	A9N18579	10
Voltage rating (Ue)	2P	230-240 V		
	3P-4P	400-415 V		
Operating frequency		$50 / 60 \mathrm{~Hz}$		
Accessories		Refer to ca	gue page C-39	

General Overview

Vigi C120 add-on residual current devices (A type)

Technical Data

Main characteristics
To IEC 60947-2

Insulation voltage (Ui)	500 V AC
Degree of pollution	3
Rated impulse withstand voltage (Uimp)	6 kV

To ASINZS 61009
Impulse current
withstand $(8 / 20 ~ \mu s)$$\quad$ Type A (non-selective s) 250 Â

Indifferent position of installation.

Additional characteristics		
Degree of protection	Device only	IP20
	Device in a modular enclosure	IP40
		Insulation class II
Operating temperature	Type A	$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage temperature		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Weight (g)

Add-on residual current devices	
Type	Vigi C120
$2 P$	325
$3 P$	500
$4 P$	580

Dimensions (mm)
C120 + Vigi C120

Acti9 Protection and Isolation

General Overview

Vigi C120 add-on residual current devices (A type) (cont.)

iDPN Vigi Residual current devices

AS/NZS 61009-1

- The iDPN Vigi residual current device provide complete protection for final circuits
- (against overcurrents and insulation faults):
- protection for users against electric shocks by direct contacts ($\leq 30 \mathrm{~mA}$)
- protection of the installations against fire risks (300 mA).
- The A-SI range has been designed to maintain a network with optimum safety and continuity of service in installations disturbed by:
- extreme atmospheric conditions,
- harmonic generating loads,
- transient operating currents.

iDPN N Vigi 6000					
Type			A	A-SI	Width in 9 mm modules
Auxiliaries			Refer to catalogue page C-45		
1P+N Curve C		Sensitivity	30 mA	30 mA	
	Rating	6 A	A9D32606		4
-		10 A	A9D32610	A9D33610	
-		13 A	A9D32613	A9D33613	
		16 A	A9D32616	A9D33616	
		20 A	A9D32620	A9D33620	
		25 A	A9D32625	A9D33625	
$\stackrel{\sim}{\sim}$		32 A	A9D32632	A9D33632	
		40 A	A9D32640	A9D33640	
Voltage rating (Ue)			230... 240 V AC		
Operating frequency			50 Hz		

Acti9 Protection and Isolation

General Overview

iDPN Vigi Residual current devices (cont.)

Visi-trip double window

- Fault tripping circuit breaker is indicated by a red mechanical indicator on the front face.
- Earth fault is indicated by a red mechanical indicator on the front face.

Clip on DIN rail 35 mm .

Indifferent position of installation.

Weight (g)

Residual current device	
Type	IDPN Vigi
1P+N	125

Dimensions (mm)

Connection

Technical Data

Main characteristics			
Type		iDPN N Vigi	iDPN H Vigi
Insulation voltage (Ui)		400 V AC	
Pollution degree		3	
Rated impulse withstand voltage (Uimp)		4 kV	
Setting temperature for ratings		$30^{\circ} \mathrm{C}$	
Magnetic tripping			
	Curve C	Between 5 and 10 ln	
According to AS/NZS 61009-1			
Limitation class		3	
Rated breaking capacity (Icn)		6000 A	10,000 A
Rated residual breaking and making capacity (IDm)		6000 A	10,000 A
$8 / 20 \mu$ s impulse with stand	Type AC	250 A	250 Â
	Type A	250 A	250 Â
	Type A-SI	3 kA	3 kA
Behaviour in case of voltage drop		Residual current protection down to 0 V according to IEC/EN 61009-1 § 3.3.8	

Additional characteristics				
Earth leakage protection with instantaneous tripping			$\begin{aligned} & 10,30,100, \\ & 300 \mathrm{~mA} \end{aligned}$	30, 300 mA
$\begin{aligned} & \text { Degree of protection (IEC } \\ & \text { 60529) } \end{aligned}$	Device only	IP20		
	Device in modular enclosure	IP40 Insulation class II		
Endurance (O-C)	Electrical	20,000 cycles		
		10,000 cycles		
	Mechanical	20,000 cycles		
Overvoltage category (IEC 60364)		III		
Operating temperature				
	Type A, A-SI	$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$		
Storage temperature		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
Tropicalization (IEC 60068-1)		Treatment 2 (relative humidity 95% to $55^{\circ} \mathrm{C}$)		

$$
<\text { 目 }>
$$

General Overview \& Reference Numbers

iC60N RCBO 6000 A / 30 mA

As per the above standards:

- The single-phase iC60N RCBO's self-contained residual current device carries
- out complete protection of final circuits:
- protection against short-circuits and cable overloads,
- protection against electrocution by direct contact.
- The neutral is not interrupted when the device is tripped. Hence iC60N RCBO can be used on most circuits, except for the ones operating under TT or IT earthing systems.

Alternating current (AC) 50/60 Hz

Breaking capacity (lcn) according to AS/NZS 61009-1	
	Voltage (Ue)
Ph/N	$\mathbf{2 3 0 - 2 4 0 ~ V}$
Rating (In) 6 to 45 A	6000 A

Accessory

Padlocking device

- Used to lock the toggle in the "open" or "closed" position by 4 mm diameter padlock (not supplied).

IC60N RCBO 6000					
$1 P+N$				A	Width in 9-mm modules
C curve	Voltage rating (V)		Sensitivity (İn)	30 mA	
	230-240	Rating (In)	6 A	A9D61806	2
			10 A	A9D61810	
			16 A	A9D61816	
			20 A	A9D61820	
			25 A	A9D61825	
			32 A	A9D61832	
			40 A	A9D61840	
			45 A	A9D61845	
Operating frequency				$50 \ldots 60 \mathrm{~Hz}$	
Auxiliaries				Refer to catalogue page C-45	
Accessories				Refer to catalogue page C-37	

Acti9 Protection and Isolation

General Overview \& Reference Numbers

iC60H RCBO 10000 A / 10, 30 and 100 mA

AS/NZS 61009.1
As per the above standards:

- The single-phase iC60H RCBO's self-contained residual current device carries out complete protection of final circuits:
- protection against short-circuits and cable overloads
- protection of persons against electric shock by direct contact (10, 30 mA sensitivities),
- protection of persons against electric shock by indirect contact (100 mA sensitivity),
- protection of equipment against fires set by leakage currents (100 mA sensitivity).
- The neutral is not interrupted when the device is tripped. Hence iC60H RCBO can be used on most circuits, except for the ones operating under TT or IT earthing systems.

Alternating current (AC) 50/60 Hz Breaking capacity (Icn) according to AS/NZS 61009-1		
	Voltage (Ue)	
Ph/N	$\mathbf{1 1 0 V}$	$\mathbf{2 3 0 - 2 4 0 ~ V}$
Rating (In) 6 to 45 A	10000 A	10000 A

Accessory

Padlocking device

- Used to lock the toggle in the "open" or "closed" position by 4 mm diameter padlock (not supplied).

IC60H RCBO 10000
1P+N
C curve

General Overview \& Reference Numbers

iC60H2 RCBO 10000 A / 30 and 100 mA

© AS/NZS 61009.1

As per the above standards:

- The 2-poles iC60H2 RCBO's self-contained residual current device carries out
- complete protection of final circuits:
- protection against short-circuits and cable overloads,
- protection of persons against electric shock by direct contact (30 mA sensitivities),
- iC60H2 RCBO switches neutral, together with phase. It is therefore suitable for all circuits, whatever the earthing system (except for TN-C).

Alternating current (AC) 50/60 Hz		
Breaking capacity (Icn) according to IEC 61009-1 Voltage (Ue)		
$\mathbf{P h} / \mathbf{N}, \mathbf{P h} / \mathrm{Ph}$	$\mathbf{1 1 0 ~ V}$	$\mathbf{2 3 0 - 2 4 0 ~ V}$
Rating (In) 10 to 32 A	10000 A	10000 A

Accessory

Padlocking device

- Used to lock the toggle in the "open" or "closed" position by 4 mm diameter padlock (not supplied).

iC60H2 RCBO 10000					
2P				A	Width in 9-mm modules
C curve	Voltage rating (V)	Sensiti	$(1 \Delta n)$	30 mA	
	110	Rating (In)	10 A	A9D19210	4
			16 A	A9D19216	
			20 A	A9D19220	
			25 A	A9D19225	
			32 A	A9D19232	
	230-240	Rating	10 A	A9D11210	
		(In)	16 A	A9D11216	
			20 A	A9D11220	
			25 A	A9D11225	
			32 A	A9D11232	
Operating frequency				$50 \ldots 60 \mathrm{~Hz}$	
Auxiliaries				Refer to ca	
Accessories				Refer to ca	

Acti9 Protection and Isolation

General Overview

iC60N, iC60H, iC60H2 RCBO 10, 30 and 100 mA

- Increased product service life thanks to fast closing independent of the speed of actuation of the toggle.
- Remote indication, open/closed/tripped, by optional auxiliary contacts.

Connection

	14 mm	Type	Rating	Tightening torque	Copper cables	
	U1 6.5 mm				Rigid	Flexible
	$\bigcirc 5.5 \mathrm{~mm}$	N in and L in	6 to 45 A	3.5 N.m	1 to $25 \mathrm{~mm}^{2}$	1 to $16 \mathrm{~mm}^{2}$
		L out and N out		2 N.m	1 to $16 \mathrm{~mm}^{2}$	1 to $10 \mathrm{~mm}^{2}$

Technical \& Reference Numbers

iC60N, iC60H, iC60H2 RCBO 10, 30 and 100 mA

Technical Data

Main characteristics	iC60N RCBO	iC60H RCBO	iC60H2 RCBO
Insulation voltage (Ui)	400 V AC		
Rated impulse withstand voltage (Uimp)	4 kV		
Rated residual operating current ($1 \Delta \mathrm{n}$)	30 mA	10, 30, 100 mA	30 mA
Thermal tripping Reference temperature	$50^{\circ} \mathrm{C}$		
Temperature derating	See module CA908007		
Limitation class	3		
Surge current withstand ($8 / 20 \mu \mathrm{~s}$) without tripping	250 A		
Rated nominal breaking capacity (Icn)	6,000 A	10,000 A	10,000 A
Phase/earth rated residual breaking and making capacity (l $1 \Delta \mathrm{~m}$)	6,000 A	7,500 A	7,500 A
Additional characteristics			
Degree of protection	IP20		
	IP40		
Endurance (O-C)	5,000 cycles		
	20,000 cycles		
Operating temperature	$-15^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$		
Storage temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
Tropicalization	Treatment 2 (relative humidity: 95% at $55^{\circ} \mathrm{C}$)		

Clip on DIN rail 35 mm .

Installation on Fishbone

IP40

Indifferent position of installation.

Weight (g)

iC60 RCBO	
iC60N RCBO	205
iC60H RCBO	205
iC60H2 RCBO	332

Dimensions (mm)

iC60N RCBO, iC60H RCBO

iC60H2 RCBO

Acti9 Protection and Isolation

General Overview \& Reference Numbers

iSPN Vigi residual current devices $10 \mathrm{~mA}, \mathrm{C}$ curve

AS/NZS 61009.1

- The single-phase iSPN Vigi self-contained residual current device carries out:
- protection of persons against direct and indirect contacts (10 mA)
- complete protection of final circuits (overcurrents and insulation faults)
- safety device to switch both of active and neutral.
- A class iSPN Vigi are sensitive to the pulsed type DC component.
- Overload, short circuit and earth fault currents are indicated by location of the handle in the OFF position.
- A push-test button "T" is positioned on the front of the device for testing that product is operational.
- This 10 mA RCBO is also Type I (according to AS/NZS 3190) and complies with the requirements of the installation rules for Patient areas, AS/NZS 3003.

Accessories

Padlocking device

- Used to lock the toggle in the "open" or "closed" position by 8 mm diameter padlock (not supplied).

1P+N comb busbars

- The comb busbars make it easier to install Schneider Electric products.

Catalog numbers
iSPN Vigi

туре				$A \sim \sim$	Width in 9-mm modules
C curve	Voltage rating (V)	Sensitivity (IDn)		10 mA	
	230/240 V AC	Rating (In)	6 A	A9D40606	2
			10 A	A9D40610	
			16 A	A9D40616	
			20 A	A9D40620	
			25 A	A9D40625	
			32 A	A9D40632	
Operating frequency				50 Hz	

Accessories

Type	
Padlocking device (bag of 2 pieces)	26970

General overview

iSPN Vigi residual current devices $10 \mathrm{~mA}, \mathrm{C}$ curve (cont.)

Connection

Type	Rating	Tightening torque	Copper cables	
			Rigid	Flexible
L and N upstream	6 to 32 A	2 N.m	1 to $16 \mathrm{~mm}^{2}$	1 to $16 \mathrm{~mm}^{2}$
L and N downstream		2 N.m	1 to $10 \mathrm{~mm}^{2}$	1 to $10 \mathrm{~mm}^{2}$

Note: for any case, isolate power before installation. Wire neutral prior to installing active.
Technical data

Main characteristics	
Voltage rating (Ue)	230/240 V AC
Insulation voltage (Ui)	400 VAC
Rated impulse withstand voltage (Uimp)	4 kV
Rated residual operating current (lın)	10 mA
Thermal tripping Reference temperature	$30^{\circ} \mathrm{C}$
Magnetic tripping C curve	Between 5 and 10 In
Limitation class	3
Rated nominal breaking capacity (Icn)	6000 A
Phase/earth rated residual breaking and making capacity (I $\triangle \mathrm{m}$)	3000 A

Indifferent position of installation.

Additional characteristics		
Degree of protection	Device only	IP 20
	Device in modular enclosure	IP 40
Endurance (O-C)	Electrical	10,000 cycles
	Mechanical	20,000 cycles
Operating temperature		$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Tropicalization	Treatment 2 (relative humidity 95% at $55^{\circ} \mathrm{C}$)	

Weight (g)
Residual current device

Type	iSPN Vigi
$1 P+N$	136

Dimensions (mm)

Acti9 Protection and Isolation

iDPH VigiARC Arc fault detection RCBO

Acti9 iDPH VigiARC is an arc fault detection device with overload, short circuit and residual current protection, which aims to reduce the risk of electrical fire.

By continuously analyzing a large number of electrical parameters, it detects the appearance of electric arcs that are responsible for starting fires. It isolates the circuit concerned which reduces flame appearance occurrence.

The European installation standard
IEC 60364-4-42 recommends the use of AFDD to protect against arc fault in final circuit:
in locations with sleeping accommodations (e.g. hotels, nursing homes, bedrooms in homes)
in locations with risks of fire due to high quantities of flammable materials (e.g. barns, wood-working shops, stores of combustible materials) in locations with combustible constructiona materials (e.g. wooden buildings) in fire propagating structures (e.g. high rise buildings) in locations where irreplaceable goods are housed (e.g. museums).

More specifically, the installation of
Acti9 iDPH VigiARC is highly recommended to protect circuits with highest risk of fire, such as: protruding cables (risk of knocks)
outside cables (greater risk of deterioration) unprotected cables in secluded areas (like storage rooms)
aging, deteriorating wiring or wiring for which the connection boxes are inaccessible.
Acti9 iDPH VigiARC must not be installed on circuits requiring a high level of continuity of service. Acti9 iDPH VigiARC is not compatible with ATEX regulations.

IEC 62606

General requirements for arc fault detection devices.

AS/NZS 61009-1

Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBOs).

As per the above standards

- The Acti9 iDPH VigiARC provides a protection for final circuits against
- overcurrents and insulation faults (protection for people against electric shocks).
- In addition to these protections, the Acti9 iDPH VigiARC monitors for electric arcs
- that occur in cables and connections, that may cause a fire.
- These arcs are the result of localised cable deterioration or loose connections.
- It is used for three types of situations that can result in a fire:
- parallel arc detection: insulation problems between two live conductors that cause a resistive short-circuit, too weak to be detected by a circuit breaker and with no earth leakage to be detected by a residual current circuit breaker,
- series arc detection: a damaged conductor or connection that causes part of the current to flow through its carbonised insulation due to a local rise in temperature
- overheating of electronic components in loads, when exposed to an overvoltage for several seconds.
- It combines the following functions:
- circuit protection against overload and short-circuit currents (circuit breaker function),
- protection for people against electric shocks by direct contacts and indirect contacts (30 mA),
- protection against fire hazards by detection of abnormal electric arcs
- protection against load fire hazards due to slow overvoltages (network overvoltage),
- fire hazard tripping indication via the front panel indicator
- device diagnosis via the test button,
- positive contact indication (green strip),
- tripping faults diagnosis by LED blinking in front face.
- The Acti9 iDPH VigiARC should be installed in the place of the circuit's final protection device.
- Product is reverse feeding: it can be supplied either by the top or the bottom.

Connection

General overview

iDPH VigiARC Arc fault detection RCBO (cont.)

Weight (g)

Arc fault detection RCBO	
Type	RCBO Acti9 iDPH VigiARC
$1 \mathrm{P}+\mathrm{N}$	237

Acti9 Protection and Isolation

General overview

iPRD1 12.5r Type 1 + 2 Low Voltage surge arresters

The Type 1 range of surge arresters meets the normative withstand capability of current wave type $10 / 350 \mu \mathrm{~s}(8 / 20 \mu \mathrm{~s}$ for Type 2 surge arresters).
It is suitable for use with TT, TN-S, TN-C and IT earthing connection systems (neutral point connection).
iPRD1 12.5r surge arresters are fitted with a remote transfer contact to send "end-of-life indication" information.
They are also fitted with easy-to-replace withdrawable cartridges.

iPRD1 12.5r

The Type 1 surge arrester is recommended for electrical installations in the service sector and industrial buildings protected by a lightning conductor or by a meshed cage.
It protects electrical installations against direct lightning strikes.
It is used to conduct the direct lightning current, propagating from the earth conductor to the network conductors.
It must be installed with an upstream disconnection device, such as a fuse or circuit-breaker, whose breaking capacity must be at least equal to the maximum prospective short-circuit current at the installation point.
iPRD1 $12.5 r$ surge arresters also provide Type 2 protection and protect the electrical installation by inely clipping the lightning wave overvoltages.
Cover all applications required by the MEN earthing system (Multiple Earthed Neutral) defined by AS/NZS 3000. 1P or 3P SPDs need to be installed in the main LV switchboard where the MEN link is connected. 1PN or 3PN are installed in the other distribution boards.

iPRD1 12.5r (1P+N, 3P+N)
(Neutral cartridge is fixed)

iPRD1 12.5r (1P) iPRD1 12.5r (3P)

Type	Product Solution			Earthing system	
Cartridge surge arrester	1P+N	3P+N	1P	3P	
iPRD1 12.5r	A9L16282	A9L16482			TT, TN-S
			A9L16182	A9L16382	TN-C

Type	No. of poles	Width 9 mm modules	$1 \operatorname{imp}(k A)$ (10/350) Impulse current	$I \max (k A)$ (8/20) Maximum discharge current	In - kA Nominal discharge current	Up - kV Voltage pro- tection level	Un - (V) Rated voltage network	Uc - V Maximum continious operating voltage (L-N)/(N-PE)	Cat. no.

$\begin{aligned} & \text { iPRD1 } \\ & 12.5 r \end{aligned}$	1P	2	12.5 (L-N)/50 (N-PE)	50	20	≤ 1.5	230	350/255	A9L16182
	$1 \mathrm{P}+\mathrm{N}$	4	12.5 (L-N)/50 (N-PE)	50	20	≤ 1.5	230	350/255	A9L16282
$\begin{aligned} & \text { Type } \\ & 1+2 \end{aligned}$	3P	6	12.5	50	20	≤ 1.5	230/400	350	A9L16382
	$3 \mathrm{P}+\mathrm{N}$	8	12.5 (L-N)/50 (N-PE)	50	20	≤ 1.5	230/400	350/255	A9L16482

Spare cartridge									
$\begin{aligned} & \text { iPRD1 } \\ & 12.5 \mathrm{r} \end{aligned}$	-	2	-	-	20	≤ 1.5	-	350	A9L16082

Surge arresters	Spare cartridge	
	Phase	Neutral
iPRD1 12.5r	A9L16082	-

Technical Data

iPRD1 $12.5 r$ Type $1+2$ Low Voltage surge arresters (cont.)

Technical Data

Main characteristics		
Operating frequency		50 Hz
Degree of protection	Front panel	IP40
	Terminals	IP20
	Impacts	IK05
Response time		<25 ns
Short circuit withstand (Iscer)		50 kA
Temporary overvoltage withstand (U_{T})	$\mathrm{U}_{\mathrm{T}}(\mathrm{L}-\mathrm{N})$	337 V AC/5 s
	$U_{T}(L-P E)$	$442 \mathrm{~V} \mathrm{AC/120} \mathrm{~min}$
Temporary overvoltage Safe failure mode (U_{T})	U_{T} (N-PE)	1200 V AC/200 ms
	$U_{T}(L-P E)$	1455 V AC/200 ms
Ground residual current ($\mathrm{I}_{\text {PE }}$)	$\mathrm{I}_{\text {PE }}(\mathrm{L}-\mathrm{PE})$	0.009 mA for 1P, 3P
	I_{PE} (N-PE)	0.000003 mA for $1 \mathrm{P}+\mathrm{N}, 3 \mathrm{P}+\mathrm{N}$
Follow current interrupting rating (I_{f})	$\mathrm{Ifi}_{\text {(}}$ (N-PE)	100 A
End-of-life indication		White: correct operation
		Red: at end of life
	Remote notification	$1.5 \mathrm{~A} / 250 \mathrm{~V}$ AC
Live conductor	Rigid cable	10... $35 \mathrm{~mm}^{2}$
	Flexible cable	10... $25 \mathrm{~mm}^{2}$
Earth cable	Rigid cable	16... $35 \mathrm{~mm}^{2}$
	Flexible cable	16... $25 \mathrm{~mm}^{2}$
Operating temperature		$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Humidity range		5 \% to 95 \%
Standards		IEC 61643-11: 2011 T1, T2 EN 61643-11: 2012 Type 1 + Type 2
Approvals		CE, EAC, VDE

Choice of disconnector / surge arrester

1): For lightning impulse current withstand use NSXm E TM80D range (2): For lightning impulse current withstand use NSXm B TM80D range
Weight (g)

Surge arresters Type	
1P	iPRD1 12.5r
$1 \mathrm{P}+\mathrm{N}$	171
3 P	299
$3 \mathrm{P}+\mathrm{N}$	486
Cartridge	Neutral
	Phase

Dimensions (mm)

Acti9 Protection and Isolation

Reference Numbers

iPRD surge arresters

Type 2 or 3 LV withdrawable surge arresters

iPRD withdrawable surge

 arresters allow quickreplacement of damaged cartridges.
Type 2 surge arresters
are tested with a $8 / 20 \mu s$
current wave.
Type 3 surge arresters
are tested with a
$1.2 / 50 \mu \mathrm{~s}$ and $8 / 20 \mu \mathrm{~s}$
combined wave.

Each surge arrester in the range has a specific application:

- incoming protection (type 2):
- the iPRD65r is recommended for a very high risk level (strongly exposed site)
- the iPRD40(r) is recommended for a high risk level
the iPRD20(r) is recommended for a medium risk level
- secondary protection (type 2 or 3):
- the iPRD8(r) ensures secondary protection of loads to be protected and is placed in cascade with the incoming surge arresters. This surge arrester is required when the loads to be protected are at a distance of more than 10 m from the incoming surge arrester.
The iPRD surge arresters with " r " indication have remote transfer of the information: "cartridge to be replaced"
Cover all applications required by the MEN earthing system (Multiple Earthed Neutral) defined by AS/NZS 3000. 1P or 3P SPDs need to be installed in the main LV switchboard where the MEN link is connected. 1 PN or 3PN are installed in the other distribution boards.

		Rated discharge	Nominal	Type of pr	tection	Network					
		current (Imax)	discharge current (In)								
				Incoming	Secondary	$1 \mathrm{P}+\mathrm{N}$	$3 \mathrm{P}+\mathrm{N}$	1P	2P	3P	4P
	\square	iPRD65									
$\stackrel{+}{+}$			20 kA	iPRD65				A9L65101			
N		Very high risk level (strongly exposed site)						A9L65121			
$\stackrel{\stackrel{\rightharpoonup}{0}}{ }$	ber Sctowiser					A9L65501					
ロ										A9L65301	
							A9L65601				
		iPRD40									
	\square	$40 \mathrm{kA}$	15 kA	iPRD40				A9L40101			
		High risk level						A9L40100			
						A9L40501					
	P					A9L40500					
										A9L40301	
										A9L40300	
							A9L40601				
							A9L40600				
		iPRD20									
		$20 \text { kA }$	5 kA	iPRD20				A9L20100			
๗ల్ల		Medium risk level				A9L20501					
©						A9L20500					
$\stackrel{\underset{\sim}{\infty}}{ }$	Sofictor									A9L20300	
							A9L20601				
							A9L20600				
		iPRD8									
		8 kA Secondary pro-	2.5 kA		iPRD8			A9L08100			
		tection: placed near the loads to be protected				A9L08501					
		when they are at a dis-				A9L08500					
	4 P	tance of more than 10 m from the incoming surge								A9L08300	
		arrester					A9L08601				
							A9L08600				

Reference Numbers

iPRD surge arresters

Type 2 or 3 LV withdrawable surge arresters (cont.)

Spare cartridges iPRD		
Type	Spare cartridges for	Cat. no
iPRD 65-350	iPRD65r	A9L65102
iPRD 40-350	iPRD40, iPRD40r	A9L40102
iPRD 20-350	iPRD20, iPRD20r	A9L20102
iPRD 8-350	iPRD8, iPRD8r	A9L08102
iPRD Neutral	All products (1P+N, 3P+N)	A9L00002

	Earthing system	Transfer	Surge arrester name	Width in mod. of 9 mm	Up - (kV) Voltage protection level			Un - (V) Rated voltage network	Uc - (V) Maximum continuous operating voltage		
					CM*		DM*		CM*		DM*
					L/t	N/t	LIN		L/t	N/t	LIN
iPRD65											
A9L65101	TT \& TN	\square	iPRD65r 1P	2	y 1.5	-	-	230	350	-	-
A9L65501	TT \& TN-S	\square	iPRD65r 1P+N	4	-	y 1.4	y 1.5		-	260	350
A9L65301	TN-C	\square	iPRD65r 3P	6	y 1.5	-	-	230/400	350	-	-
A9L65601	TT \& TN-S	■	iPRD65r 3P+N	8	-	y 1.4	y 1.5		-	260	350
iPRD40 \square											
A9L40101	TT \& TN	-	iPRD40r 1P	2	y 1.6	-	-	230	350	-	-
A9L40100	TT \& TN		iPRD40 1P		y 1.6	-	-		350	-	-
A9L40501	TT \& TN-S	\square	iPRD40r 1P+N	4	-	y 1.4	y 1.6		-	260	350
A9L40500	TT \& TN-S		iPRD40 1P+N		-	y 1.4	y 1.6		-	260	350
A9L40301	TN-C	-	iPRD40r 3P	6	y 1.6	-	-	230/400	350	-	-
A9L40300	TN-C		iPRD40 3P		y 1.6	-	-		350	-	-
A9L40601	TT \& TN-S	-	iPRD40r 3P+N	8	-	y 1.4	y 1.6		-	260	350
A9L40600	TT \& TN-S		iPRD40 3P+N		-	y 1.4	y 1.6		-	260	350
iPRD20											
A9L20100	TT \& TN		iPRD20 1P	2	y 1.2	-	-	230	350	-	-
A9L20501	TT \& TN-S	\square	iPRD20r 1P+N	4	-	y 1.4	y 1.2		-	260	350
A9L20500	TT \& TN-S		iPRD20 1P+N		-	y 1.4	y 1.2		-	260	350
A9L20300	TN-C		iPRD20 3P	6	y 1.2		-	230/400	350	-	-
A9L20601	TT \& TN-S	\square	iPRD20r 3P+N	8	-	y 1.4	y 1.2		-	260	350
A9L20600	TT \& TN-S		iPRD20 3P+N		-	y 1.4	y 1.2		-	260	350
iPRD8 (1)					Type 2 / Type 3 (1)						
A9L08100	TT \& TN		iPRD8 1P	2	y 1.2	-	-	230	350	-	-
A9L08501	TT \& TN-S	-	iPRD8r 1P+N	4	-	y 1.4	y 1.2		-	260	350
A9L08500	TT \& TN-S		iPRD8 1P+N		-	y 1.4	y 1.2		-	260	350
A9L08300	TN-C		iPRD8 3P	6	y 1.2	-	-	230/400	350	-	-
A9L08601	TT \& TN-S	-	iPRD8r 3P+N	8	-	y 1.4	y 1.2		-	260	350
A9L08600	TT \& TN-S		iPRD8 3P+N		-	y 1.4	y 1.2		-	260	350

[^2]
Acti9 Protection and Isolation

General overview

iPRD surge arresters

Type 2 or 3 LV withdrawable surge arresters

Connection

Copper cables	
Rigid	Flexible or with ferrule

| iPRD $\quad 3.5$ N.m | 2.5 to $25 \mathrm{~mm}^{2} \quad 4$ to $16 \mathrm{~mm}^{2}$ |
| :--- | :--- | :--- |

Technical Data iPRD surge arresters

Main characteristics		iPRD
Operating frequency		$50 / 60 \mathrm{~Hz}$
Operating voltage (Ue)		230/400 V AC ± 10 \%
Permanent operating current (Ic)		$<1 \mathrm{~mA}$
Response time		<25 ns
Short circuit current rating (Isccr)		$50 \mathrm{kA} \mathrm{(} 50 \mathrm{~Hz}$)
Short circuit current rating (Isccr), case of double fault		-
Temporary overvoltage withstand $\left(U_{T}\right)$	$\mathrm{U}_{\mathrm{T}}(\mathrm{L}-\mathrm{N})$	337 V AC / 5 s
	$\mathrm{U}_{\mathrm{T}}(\mathrm{L}-\mathrm{PE})$	442 V AC / 120 min
Temporary overvoltage	$\mathrm{U}_{\text {T }}$ (N-PE)	1200 V AC / 200 ms
Safe failure mode (U_{T})	$U_{T}(\mathrm{~L}-\mathrm{PE})$	1455 V AC / 200 ms
Ground residual current (l_{PE})	$\mathrm{I}_{\text {PE }}$ (L-PE)	$600 \mu \mathrm{~A}$ for 1P, 2P, 3P, 4P
	$\mathrm{I}_{\text {PE }}$ (N-PE)	$3 \mu \mathrm{~A}$ for $1 \mathrm{P}+\mathrm{N}, 3 \mathrm{P}+\mathrm{N}$
Satisfactory operation indication: by mechanical indicator	White	In operation
	Red	Cartridge must be replaced
Remote indication of satisfactory operation		By contact NO, NC $250 \mathrm{~V} / 0.25$ A
Additional characteristics		
Degree of protection (IEC 60529)	Device only	IP20 (built-in)
	Device in modular enclosure	IP40
Operating temperature		$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage temperature		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Humidity range		5 \% to 95 \%
Type of connection terminals		Tunnel terminals, 2.5 to $35 \mathrm{~mm}^{2}$
Standards		IEC 61643-11: 2011 T2, T3 and EN 6164311: 2012 Type 2, Type 3

Surge arrester/circuit breaker association

Surge arrester	Associated circuit breaker	
	iPRD	Isc y $\mathbf{5 0} \mathbf{k A}$
	Isc y $\mathbf{2 5} \mathbf{~ k A}$	Curve C 63 A
iPRD65	Curve C 50 A	Curve C 63 A
iPRD40	Curve C 40 A	Curve C 63 A
iPRD20	Curve C 20 A	Curve C 63 A
iPRD8	Curve C 10 A	

Weight (g)

Surge arrester	
Type	iPRD
$1 P$	119
$1 P+N$	220
$3 P$	340
$3 P+N$	450

iPRD dimensions (mm)

General overview

iPRD surge arresters

Type 2 or 3 LV withdrawable surge arresters (cont.)

Connection iPRD surge arresters with its short circuit disconnector

TT/TN-S

Power supply through the top
Connection with cables

Surge arrester iPRD $3 P+N+i C 60 N 3 P+N$

IT/TNC-S with neutral
Power supply through the top

Surge arrester iPRD 4P + iC60N 4P

TT/TN-S
Power supply through the bottom Connection with comb busbar

Surge arrester iPRD 3P+N+iC60N 3P+N

IT/TNC-S with neutral
Power supply through the bottom Connection with comb busbar

Surge arrester iPRD 4P + iC60N 4P

$$
<\text { 爵 > }
$$

Acti9 Protection and Isolation

Accessories

iC60, ilD, iDPN Vigi, RCA, ARA, iSW
Accessories

Catalogue numbers	A9A27005	A9A27006	$\begin{aligned} & \text { A9A27003 } \\ & \text { (1 per pole) } \end{aligned}$
	Operating sub-assembly		
	+	+	
	Black handle	Red handle	
Set of	1	1	1
Suitability			
iC60	- 2P, 3P, 4P		\square
iC60 RCBO	-		-
iSW	- 2P, 3P, 4P		\square
iC60 + Vigi iC60	- 2P, 3P, 4P		-
ild	\square		$\square \leq 63 \mathrm{~A}$
iDPN Vigi	-		-
$\begin{aligned} & \text { RCA+iC60 or } \\ & \text { ARA+iC60 } \end{aligned}$	-		-
ARA+ild	-		-

Accessories

iC60, iID, iDPN Vigi, RCA, ARA, iSW (Cont.)

Accessories	Mounting			
	Padlocking device		Captive padlocking device	
				$\begin{aligned} & \times \times \\ & \stackrel{x}{0} \\ & \stackrel{0}{0} \\ & \stackrel{1}{8} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$
Function				
	Used to padlock breaker in open or closed position - Padlock diameter: 3 to 6 mm - Sealable (max. diameter: 1.2 mm) - Locking in ON position does not prevent tripping of the breaker in the event of faults - Suitable for IEC/EN 60947-2 compliant disconnection	Used to padlock protection device in open position - Padlock diameter: 3 mm - Suitable for IEC/EN 60947-2 compliant disconnection	Used to padlock breaker in closed position - Padlock diameter : 3 to 6 mm - Fixed mounting on the left side or right side of the device - 9 mm wide - Compatible with comb busbar	Used to padlock breaker in closed position - Padlock diameter : 3 to 6.5 mm - Fixed mounting on the line side of the device - Compatible with MSC chassis - Special Escutcheon Cut Out for SAUA9PLDx is $63 \mathrm{~mm}(47 \mathrm{~mm}+$ 16 mm for padlocking device)
Catalogue numbers	A9A26970	A9A27049	A9A26380 A9A26381	SAUA9PLDF Front padlock device (set of 1),
				SAUA9PLDTC Padlock device terminal cover (set of 10),
				SAUA9PLDPF Padlock device pole filler (set of 2)
Set of	10	10	1	
Suitability				
	■	-	iC60, iC60 RCBO (left only) iC60+ Vigi iC60, ilD	- iC60, iC60 RCBO
	-	\square		
	\square	-		

Acti9 Protection and Isolation

Accessories

iC60, iSW

| Accessories | Security | |
| :--- | :--- | :--- | :--- |
| | Screw shield | |

Catalogue numbers	A9A26982	A9A26981	A9A26975	A9A26976	A9A27001	A9A27062
Set of	12×1 pole	20×4 poles (splittable)	2×1 pole	2×2 poles	10	5
Suitability						
iC60	-	\square	\square	-	\square	\square
iSW	-	-	\square	\square	\square	\square
Vigi iC60	\square	-	-	-	-	\square
iID	-	\square	-	-	\square	\square
iCV40,	-	-	-	-	-	\square
iDPN Vigi	-	-	-	-	-	\square
iID40	-	- (2)	-	- (2)	only on power supply terminals (bottom)	\square
Reflex iC60 or $\begin{aligned} & \text { RCA+iC60 or } \\ & \text { ARA+iC60 } \end{aligned}$	-	\square	\square	\square	\square	\square
ARA+ild	-	\square	-	\square	\square	\square

[^3]Accessories
iC60, iSW (cont.)
Dimensions (mm)

Terminal shield 1 P

Terminal shield 2P

Acti9 Protection and Isolation

Accessories

iC60, iSW (cont.)

Rotary handle installation
Dimensions (mm)

\mathbf{P} (mm)	\mathbf{F} (mm)
300	5
500	11

Rotary handle: front mounted control

Rotary handle: side mounted control

Accessories

C120, C60H-DC, iSW devices

Accessories	Installation			
	Rotary handle	Padlocking device		
Function				
	Front or side control of 2,3 and 4-pole circuit breakers	Used to padlock a circuit breaker in the "open" or "closed" position		

- Degree of protection: IP40
- A complete rotary handle consists of:
- a circuit-breaker operating sub-assembly, cat. no. 27046,
- a handle cat. no. 27047 or a handle cat. no. 27048
- Installation:
- the circuit-breaker operating sub-assembly cat. no. 27046 is fixed to the circuit breaker
- the removable handle cat. no. 27047 is mounted on the removable front panel or on the enclosure door
- the fixed handle cat. no. 27048 is fixed to the
- front or side panel of the enclosure

or "closed" position

- Diameter of the padlock: 8 mm max.
- Locking in the ON position does not prevent the circuit breaker from tripping in the event of a fault
- Isolation: in conformity with IEC/EN 60947-2.

Cat. numbers	27047 Removable extended handle	27048 Fixed handle	27046 Operating sub-assembly	27145	26970
Set of	1	1	1	4	2
Suitable for the following devices:					
C60	- 2P, 3P, 4P			-	\square
C120	- 2P, 3P, 4P			\square	-
C120 + Vigi C120	- 2P, 3P, 4P			\square	-
DPN, DPN Vigi	- 3P, 4P			-	\square
C60H-DC	- 2P			-	\square
ID	-			-	\square
iSW	iSW u at 4 modules of 9 mm			-	\square
				-	\square

Acti9 Protection and Isolation

Accessories

C120, C60H-DC, iSW devices (cont.)

NG125 Devices

Acti9 Protection and Isolation

Auxiliaries

Electrical auxiliaries for iC60，iID，iDPN Vigi，iDPN VigiARC

－The electrical auxiliaries are combined with iC60，iDPN Vigi circuit breakers，ilD，iDPN VigiARC
－They enable tripping or remote indication of their position（open／closed／tripped）upon a fault．
－They are fastened by clips（without tools）to the left side of the breaker．
－The iOF／SD＋OF auxiliary is a 2－in－1 product：via a mechanical selector switch，it provides two contacts，OF＋SD or OF＋OF．
－The iOF＋SD24 auxiliary can report open／ closed（OF）status information and intentional or fault tripping of the associated device（SD） to the Acti9 Smartlink or a programmable logic controller via the TI24 interface（ 24 V DC）．
－The low current auxiliaries iOF，iSD，iSD＋OF （2 to 100 mA ）are especially dedicated to low current application to report status information to a Programmable Logic Controller（Industry）or a Controller（Building／BMS）．

Tripping auxiliaries：

IEC 60947－1／AS／NZS 60947．1

－iMN：undervoltage release
－iMNs：delayed undervoltage release
－iMNx：undervoltage release，independant from supply voltage
－iMX：shunt release
－iMX＋OF：shunt release with open／close contact．

IEC 63052

－iMSU：overvoltage release

Indication auxiliaries：

AS／NZS IEC 60947－5－1

－iOF：open／close contact 0．1－6A
－iSD：fault indicating contact 0．1－6A
－iOF／SD＋OF：open／close contact and switchable OF or SD contact 0．1－6A
－iOF＋SD24：open／close contact OF and default indicating contact SD with Ti24 interface．

AS／NZS IEC 60947－5－4

－iOF＋SD24：open／close contact OF and default indicating contact SD with Ti24 interface

0ヶ6ヶ0ヶดด

Auxiliaries

Electrical auxiliaries for iC60, ilD, iDPN Vigi, iDPN VigiARC (cont.)

Auxiliaries	Tripping		
	iMN	iMNs	iMNx
Type	Undervoltage release		
	Instantaneous	Delayed	Independent of the supply voltage

| Function | - Trips the device with which it is combined when its input voltage de-
 creases (between 70% and 35% Un).
 - Prevents device closing again until its input voltage is restored |
| :--- | :--- | | -Tripping of the associated device by opening
 of the control circuit
 -
 (e.g. push-button, dry contact) |
| :--- |

| Wiring Diagrams | |
| :--- | :--- | :--- |
| Use | |

Catalogue numbers	A9A26960	A9A26961	A9A26963	A9A26969	A9A26971
iC60, iID, iDPN Vigi	\square	\square	\square	\square	\square
iC60 RCBO	\square	\square	\square	■	\square
Technical specifications					
Rated voltage (Ue)	220... 240 V AC	48 V AC	220... 240 V AC	220... 240 V AC	380... 415 V AC
	-	48 V CC	-	-	
Standardised operating and non-response to voltage times (Ua)*	-	-	-	-	-
Maximum operating time	-	-	-	-	-
Minimum non-response time	-	-	-	-	-
Operating frequency	50/60 Hz		$50 / 60 \mathrm{~Hz}$	$50 / 60 \mathrm{~Hz}$	
Red mechanical indicator	On front face		On front face	On front face	
Test function	-		-	-	
Width in 9 mm modules	2		2	2	
Operating current	-		-	-	
Number of contacts	-		-	-	
Operating temperature	$-35 . . .+70^{\circ} \mathrm{C}$		$-35 \ldots+70^{\circ} \mathrm{C}$	$-35 \ldots+70^{\circ} \mathrm{C}$	
Storage temperature	$-40 \ldots+85^{\circ} \mathrm{C}$		$-40 \ldots+85^{\circ} \mathrm{C}$	$-40 \ldots+85^{\circ} \mathrm{C}$	

*(Ua)
Voltages measured between the phase and the neutral conductor, at which the iMSU device must control the associated protective device.

Acti9 Protection and Isolation

Auxiliaries

Electrical auxiliaries for iC60, ilD, iDPN Vigi, iDPN VigiARC (cont.)

Auxiliaries	Tripping	
	iMSU	iMX + OF
Type	Overvoltage release	Shunt release
		With Open/Close auxiliary contact
Function		
	- Switches off the power supply by opening the breaker with which it is combined, in the event that the phase/neutral voltage is exceeded (loss of neutral). For a four-phase network, use three iMSU tripping auxiliaries.	- Trips the associated device when it is powered on
		- Includes an open/close contact (OF) to indicate the "open" or "closed" position of the device
Wiring Diagrams		
Use		
	- Protection of equipment against overvoltages on the - electrical network (neutral conductor break) - Voltage monitoring between phase and neutral conductors	- Emergency stoppage by normally open push button - Remote indication of the position of the associated device
Catalogue numbers	A9A26500	A9A26946 A9A26947 A9A26948
iC60, ild, iDPN Vigi	\square	■ ■ ■
iC60 RCBO	\square	■ ■ ■
Technical specifications		
	230 V AC	100... 415 V AC 48 V AC $12 \ldots 24 \mathrm{~V}$ AC
	-	110... 130 V DC 48 V DC $12 . .24 \mathrm{~V}$ DC
	255 V AC 275 V AC 300 V AC 350 V AC 400 V AC	-
	No tripping 15 s 5 s 0.75 s 0.20 s	- - -
	3 s 1 s 0.25 s 0.07 s	- - -
	$50 / 60 \mathrm{~Hz}$	$50 / 60 \mathrm{~Hz}$
	On front face	On front face
	-	-
	2	2
	-	10 mA mini, 6 A maxi
		$\leq 24 \mathrm{VDC} 6 \mathrm{~A}$
		48 V DC 2 A
		≤ 130 V DC 1 A
		≤ 240 V AC 6 A
		415 V AC 3 A
	-	1 NO/NC
	$-35 \ldots+70^{\circ} \mathrm{C}$	$-35 \ldots+70^{\circ} \mathrm{C}$
	$-40 \ldots+85^{\circ} \mathrm{C}$	$-40 \ldots+85^{\circ} \mathrm{C}$

Auxiliaries
Electrical auxiliaries for iC60, iID, iDPN Vigi, iDPN VigiARC (cont.)

Auxiliaries		Indication		
		iSD+OF	iOF/SD+OF	iOF+SD24
Type		Open/close and fault indicating contact	Double open/close or fault indicating contact	Double open/close and fault indicating contact
Function				
		- The iSD+OF auxiliary is a 2-in-1 product: it provides an OF+SD contact - 2 contacts ($2 \mathrm{NO} / \mathrm{NC}$) can report the signalling information of the associated device to a Programmable Logic Controller (Industry) or a Controller (Building/BMS)	- The iOF/SD+OF auxiliary is a 2-in-1 product: via a mechanical selector switch, it provides 2 contacts, OF+SD or OF+OF	- 2 contacts ($1 \mathrm{NO}+1 \mathrm{NC}$) can report the signalling information of the associated device to the Acti9 Smartlink, a Programmable Logic Controller (Industry) or a Controller (Building/BMS): - electrical fault - actuation of the tripping auxiliary - "Open" or "Closed" position of the associated device
Wiring Diagrams				
Utilization				
		- Remote indication of position and tripping upon a fault of the associated device	- Remote indication of position and/or tripping upon a fault of the associated device	- Remote indication of position and tripping upon a fault of the associated device
Catalogue numbers		A9A26919	A9A26909	A9A26897 A9A26898
iC60, ild, iDPN Vigi, iD	N VigiARC	\square	\square	■ ■
iC60, iID double termin		\square	\square	$\square \square$
iC60 RCBO, iKQE RCB		\square	\square	\square
Technical specifications				
Rated voltage (Ue)	V AC	24... 250	24... 415	- -
	V DC	24... 220	24... 130	24 24
Operating frequency	Hz	50/60	50/60	- -
Red mechanical indicator		On front face	On front face	On front face On front face
Test function		On toggle	On toggle	On toggle On toggle
Width in 9 mm modules		1	1	1 1
Operating current	24 V DC	2 mA to 100 mA	100 mA to 6 A	2 mA to 100 mA 2 mA to 100 mA
	48 V DC	2 mA to 100 mA	100 mA to 2 A	- -
	60 V DC	2 mA to 100 mA	100 mA to 1.5 A	- -
	130 V DC	2 mA to 100 mA	100 mA to 1 A	- -
	220 V DC	2 mA to 100 mA	-	- -
	24... 240 V AC	2 mA to 100 mA	100 mA to 6 A	- -
	415 V AC	-	100 mA to 3 A	- -
Number of contacts		$\begin{aligned} & 1 \mathrm{NO}(\mathrm{OF}) / \mathrm{NC} \\ & 1 \mathrm{NO} / \mathrm{NC}(\mathrm{SD}) \\ & \hline \end{aligned}$	$1 \mathrm{NO}(\mathrm{OF}) / \mathrm{NC}$ 1 NO (OF) / NC $1 \mathrm{NO}(\mathrm{OF}) / \mathrm{NC}$ $1 \mathrm{NO} / \mathrm{NC}$ (SD)	1 NO (OF) + 1 NC (SD)
Connections - terminals		Screw clamp	Screw clamp	Spring-loaded Ti24 (sold separately)
Wiring position		Top and bottom	Top and bottom	Top Bottom
Busbar compatibility		-	-	Bottom Top
Operating temperature	${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$	-35...+70	$-25 \ldots+70-25 \ldots+70$
Storage temperature	${ }^{\circ} \mathrm{C}$	$-40 \ldots+85$	$-40 \ldots+85$	$-40 \ldots+85-40 \ldots+85$

Acti9 Protection and Isolation

Auxiliaries

Electrical auxiliaries for iC60, iID, iDPN Vigi, iDPN VigiARC

Auxiliaries

- Low current auxiliary (2 to 100 mA): 1 contact ($1 \mathrm{NO} /$ NC) can report the signalling information to a Programmable Logic Controller (Industry) or a Controller (Building/BMS)
Wiring Diagrams

Utilization					
		- Remote indication of the position of the associated device		- Remote indication of tripping upon a fault of the associated device	
Catalogue numbers		A9A26914	A9A26904	A9A26917	A9A26907
iC60, ild, iDPN Vigi, iDPN VigiARC		\square	\square	\square	\square
iC60, ild double terminals		-	-	-	-
iC60 RCBO, iKQE RCBO		\square	■	\square	-
Technical specifications					
Rated voltage (Ue)	V AC	24... 250	24... 415	24... 250	24... 415
	V DC	24... 220	24... 130	24... 220	24... 130
Operating frequency	Hz	50/60	50/60	50/60	50/60
Red mechanical indicator		-	-	On front face	On front face
Test function		On toggle	On toggle	On toggle	On toggle
Width in 9 mm modules		1	1	1	1
Operating current	24 V DC	2 mA to 100 mA	100 mA to 6 A	2 mA to 100 mA	100 mA to 6 A
	48 V DC	2 mA to 100 mA	100 mA to 2 A	2 mA to 100 mA	100 mA to 2 A
	60 V DC	2 mA to 100 mA	100 mA to 1.5 A	2 mA to 100 mA	100 mA to 1.5 A
	130 V DC	2 mA to 100 mA	100 mA to 1 A	2 mA to 100 mA	100 mA to 1 A
	220 V DC	2 mA to 100 mA	-	2 mA to 100 mA	-
	24... 240 V AC	2 mA to 100 mA	100 mA to 6 A	2 mA to 100 mA	100 mA to 6 A
	415 V AC	-	100 mA to 3 A	-	100 mA to 3 A
Number of contacts		1 NO (OF) / NC	1 NO (OF) / NC	1 NO / NC (SD)	1 NO / NC (SD)
Connections - terminals		Screw clamp	Screw clamp	Screw clamp	Screw clamp
Wiring position		Bottom	Bottom	Bottom	Bottom
Busbar compatibility		Top	Top	Top	Top
Operating temperature	${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$	-35...+70	-25...+70	-35...+70
Storage temperature	${ }^{\circ} \mathrm{C}$	-40...+85	-40...+85	-40...+85	$-40 \ldots+85$

Auxiliaries

Electrical auxiliaries for iC60, iID, iDPN Vigi, iDPN VigiARC (cont.)

$\begin{array}{lll}\stackrel{\circ}{\otimes} & \square & \text { Digital Input operation regions } \\ \stackrel{\circ}{\circ} & \square & \text { Low Current Auxiliaries operation region } \\ \stackrel{y}{\otimes} & \square & \text { Regular Auxiliaries operation region }\end{array}$ Low Current Auxiliaries operation re
Regular Auxiliaries operation region

How to generate summary data using OF or SD contacts of low current electrical auxiliaries

- Electrical summary of the OF signals or electrical summary of the SD signals can be generated with low current indication auxiliaries (2 mA to 100 mA) wired as a daisy chain
- The OF connections and the SD connections must not be connected on the same daiy chain: 2 separate daisy chains are required to report OF information on the one hand and SD information on the other
- A daisy chain is made of up to 100 OF contacts or 100 SD contacts
- A daisy chain is connected locally to the PLC or the Controller (inside the same switchboard).

OF contacts within a daisy chain

- OF contacts are Normally Open (NO)
- The electrical summary of the OF signals can be done by cabling in series all OF signals
- Any open position opens the daisy chain and can be detected

SD contacts within a daisy chain

- SD contacts are Normally Closed (NC)
- The electrical summary of the SD signals can be done by cabling in series all SD signals
- Any SD signal opens the daisy chain and can be detected.

PLC / Controller

Acti9 Protection and Isolation

Auxiliaries

Electrical auxiliaries for iC60, ilD, iDPN Vigi, iDPN VigiARC (cont.)

Connection

mos	Type	Tightening	Copper ca		Multi-cables	
$\begin{aligned} & \overline{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		torque	Rigid	Flexible	Rigid	Cables with ferrule
				$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \text { in } \end{aligned}$		
	Indication auxiliaries	1 N.m	1 to $4 \mathrm{~mm}^{2}$	0.5 to $2,5 \mathrm{~mm}^{2}$	$2 \times 2.5 \mathrm{~mm}^{2}$	$2 \times 1.5 \mathrm{~mm}^{2}$
N	Tripping auxiliaries	1 N.m	1 to $6 \mathrm{~mm}^{2}$	0.5 to $4 \mathrm{~mm}^{2}$	$2 \times .2 .5 \mathrm{~mm}^{2}$	$2 \times 2.5 \mathrm{~mm}^{2}$

Ti24 connector Connection

Type	Catalogue numbers	Copper cables	
		Rigid	Flexible
Ti24 interface	A9XC2412	1×0.5 to $1.5 \mathrm{~mm}^{2}$	1×0.5 to $1.5 \mathrm{~mm}^{2}$

Ti24 prefabricated cables connection

Auxiliaries

Electrical auxiliaries for iC60, ilD, iDPN Vigi, iDPN VigiARC (cont.)

Clip on DIN rail 35 mm .

Indifferent position of installation.

Technical data
Weight (g)
Electrical auxiliaries

Type	
iMN	69
iMNs	72
iMNx	79
iMSU	68
iMX	64
iMX+OF	68
iOF	32
iSD	33
iOF/SD+OF	43
iOF+SD24	25

Dimensions (mm)

Acti9 Protection and Isolation

Auxiliaries

Electrical auxiliaries for C120, C60H-DC

- The electrical auxiliaries provide the remote tripping or position (open/closed/tripped) indication functions of these devices in the event of a fault.
- They clip on (no tool required) to the left- hand side of the associated device.
- The OF+SD/OF auxiliary is a two-in-one product: a mechanical selector switch is used to select one of two contacts: OF+SD or OF+OF.
- The OF+SD24 auxiliary can report open/ closed (OF) status information and intentional or fault tripping of the associated device (SD) to the Acti 9 Smartlink or a programmable logic controller via the TI24 interface (24 V DC).
- The low current auxiliaries OF, SD (2 to 100 mA) are especially dedicated to low current application to report status information to a Programmable Logic Controller (Industry) or a Controller (Building/BMS).

Tripping auxiliaries:

AS/NZS IEC 60947-1

- MN: undervoltage release
- MNs: delayed undervoltage release
- MNx: undervoltage release, independant from supply voltage

MX: shunt release

- MX+OF: shunt release with open/close contact.

IEC 63052

- MSU: overvoltage release.

Indication auxiliaries:

AS/NZS IEC 60947-5-1

- OF.S: open/closed contact for ID
- OF: open/closed contact
- SD: fault indicating contact
- OF+SD/OF: choice of open/closed contact and OF or SD contact via the selector switch
- OF+SD24: open/close contact OF and cfault indicating contact SD with Ti24 interface.

AS/NZS IEC 60947-5-4

OF+SD24: open/close contact OF and default indicating contact SD with Ti24 interface

Auxiliaries

Electrical auxiliaries for C120, C60H-DC (cont.)

Auxiliaries	Tripping	
	MN	MNx
Type	Undervoltage release	
	Instantaneous Delayed	Independent of the supply voltage
Function		
	- Causes the device with which it is associated to trip when its input voltage decreases (between 70% and 35% of Un). Prevents the device from closing until its input voltage has been restored - No tripping in the event of transient voltage dips (up to 0.2 s)	- Tripping of the associated device by opening of the control circuit (e.g. push-button, dry contact) - A drop in the supply voltage does not trip the associated device - A locking push-button control allows the circuit protected (e.g. machine control) to be placed in safety configuration
Wiring Diagrams		

Utilization

- Emergency stop via a normally-closed pushbutton
- Ensures the safety of the power supply circuits of several machines by preventing accidental startups
- Fail-safe emergency stop
- Insensitive to the variation in the control circuit voltage to improve continuity of service

Important: Before any servicing operation switch off the mains power supply (voltage presence at terminals E1/E2)

Catalogue numbers	A9N26960	A9N26961	A9N26959	A9N26963	A9N26969	A9N26971
C60, C120, DPN, DPN Vigi, ID	\square	\square	\square	\square	\square	\square
C60H-DC, SW60-DC, C60PV-DC, C60NA-DC, C120NA-DC	\square	\square	\square	\square	\square	\square
Technical specifications						
Rated voltage (Ue) V AC	220... 240	48	115	220... 240	230	400
V DC	-	48	-	-	-	
Standardised operating and non-response to voltage times (Ua)*	-	-	-	-	-	-
Maximum operating time	-	-	-	-	-	-
Minimum non-response time	-	-	-	-	-	-
Operating frequency Hz	50/60		400	50/60	50/60	
Mechanical state indicator light, red	On front face			On front face	On front fac	
Test function	-			-	-	
Width in 9 mm modules	2			2	2	
Operating current	-			-	-	
Number of contacts	-			-	-	
Operating temperature ${ }^{\circ} \mathrm{C}$	$-25 . . .+50$			$-25 \ldots+50$	-25...+50	
Storage temperature ${ }^{\circ} \mathrm{C}$	-40... +85			-40... +85	-40... +85	
Standards						
IEC/EN 60947-1	\square			\square	\square	
IEC/EN 60947-5-1	-			-	-	
EN 60947-2	\square			\square	-	
EN 62019-2 ${ }^{(1)}$	-			-	-	

[^4]
Acti9 Protection and Isolation

Auxiliaries
Electrical auxiliaries for C120, C60H-DC (cont.)

[^5]Auxiliaries

Electrical auxiliaries for C120, C60H-DC, C60PV-DC (cont.)

Auxiliaries	Indication			
	OF	OF	SD	
Type	Open/closed auxiliary contact		Fault indicating contact	
Function				
	- Changeover contact indicates the "open" or "closed" position of the device - Low current auxiliary (2 to 100 mA): 1 contact ($1 \mathrm{NO} / \mathrm{NC}$) can report the signalling information to a Programmable Logic Controller (Industry) or a Controller (Building/BMS)		- Changeover contact indicates the position of the device upon: - electrical fault - action on tripping auxiliary - Low current auxiliary (2 to 100 mA): 1 contact ($1 \mathrm{NO} / \mathrm{NC}$) can report the signalling information to a pProgrammable Logic Controller (Industry) or a Controller (Building/BMS)	
Wiring diagrams				
	$\stackrel{\circ}{\circ}$			
Use				
	- Remote indication of the position of the associated device		- Remote fault tripping indication of the associated device	
Catalogue numbers	A9N26914	A9N26904	A9N26917	A9N26907
ID	■	\square	\square	\square
C60, C120, DPN, DPN Vigi, C60H-DC, C60H-DC, SW60DC, C60PV-DC, C60NA-DC, C120NA-DC	\square	\square	\square	\square
Technical specifications				
Rated voltage (Ue)	24... 250 V AC	24...415 V AC	24... 250 V AC	24...415 V AC
	24... 220 V DC	24...130 V DC	24... 220 V DC	24...130 V DC
Operating frequency	$50 / 60 \mathrm{~Hz}$			
Mechanical state indicator	-	-	On front face	On front face
Test function	On front face	On front face	On front face	On front face
Width in 9 mm modules	1	1	1	1
Operating 24 V DC	2 mA to 100 mA	100 mA to 6 A	2 mA to 100 mA	100 mA to 6 A
current 48 VDC	2 mA to 100 mA	100 mA to 2 A	2 mA to 100 mA	100 mA to 2 A
60 V DC	2 mA to 100 mA	100 mA to 1.5 A	2 mA to 100 mA	100 mA to 1.5 A
130 V DC	2 mA to 100 mA	100 mA to 1 A	2 mA to 100 mA	100 mA to 1 A
220 V DC	2 mA to 100 mA	-	2 mA to 100 mA	-
$24 . .240 \mathrm{~V}$ AC	2 mA to 100 mA	100 mA to 6 A	2 mA to 100 mA	100 mA to 6 A
415 V AC	-	100 mA to 3 A	-	100 mA to 3 A
Number of contacts	1 NO (OF) / NC	1 NO (OF) / NC	1 NO / NC (SD)	$1 \mathrm{NO} / \mathrm{NC}$ (SD)
Connections - terminals	Screw clamp	Screw clamp	Screw clamp	Screw clamp
Wiring position	Bottom	Bottom	Bottom	Bottom
Busbar compatibility	Top	Top	Top	Top
Operating temperature	$-25 \ldots+70^{\circ} \mathrm{C}$	$-25 \ldots+70^{\circ} \mathrm{C}$	$-25 \ldots+70^{\circ} \mathrm{C}$	$-25 \ldots+70^{\circ} \mathrm{C}$
Storage temperature	$-40 \ldots+85^{\circ} \mathrm{C}$	$-40 \ldots+85^{\circ} \mathrm{C}$	$-40 \ldots+85^{\circ} \mathrm{C}$	$-40 \ldots+85^{\circ} \mathrm{C}$
Standards				
IEC/EN 60947-1	-	-	-	-
IEC/EN 60947-5-1	\square	\square	\square	\square
IEC/EN 60947-5-4	■	-	\square	-
EN 60947-2	-	-	-	-
EN 62019-2 ${ }^{(1)}$	■	\square	\square	\square

(1) For C120, DPN.

Acti9 Protection and Isolation

Auxiliaries

Electrical auxiliaries for C120, C60H-DC, C60PV-DC (cont.)

Auxiliaries		Indication		
		OF+SD/OF	OF+SD24	
Tуре		Double open/closed or fault indicating contact	Double open/close and fault indicating contact	
Function				
		- The OF+SD/OF auxiliary is a $2-\mathrm{in}-1$ product: via a mechanical selector switch, it provides two contacts, OF+SD or OF+OF	- 2 contacts ($1 \mathrm{NO}+1 \mathrm{NC}$) can report the signalling information of the associated device to the Acti9 Smartlink, a Programmable Logic Controller (Industry) or a Controller (Building/BMS): - electrical fault - actuation of the tripping auxiliary - "Open" or "Closed" position of the associated device	
Wiring diagrams				
Use				
		- Remote indication of position and/or tripping upon a fault of the associated device	- Remote indication of position and tripping upon a fault of the associated breaker	
Catalogue	mbers	A9N26914	A9N26917	
ID		\square	■	
$\begin{aligned} & \text { C60, C120, } \\ & \text { DC, C60H- } \\ & \text { DC, C60NA } \end{aligned}$	N, DPN Vigi, C60H SW60-DC, C60PV, C120NA-DC	\square	\square	
Technical specifications				
Rated voltage (Ue)		24...415 V AC	-	
		24...130 V DC	24 V DC	
Operating	quency	$50 / 60 \mathrm{~Hz}$	-	
Mechanical	ate indicator	On front face	On front face	
Test functio		On front face	On toggle	
Width in 9	modules	1	1	
Operating current	24 V DC	100 mA to 6 A	2 mA to 100 mA	
	48 V DC	100 mA to 2 A	-	
	60 V DC	100 mA to 1.5 A	-	
	130 V DC	100 mA to 1 A	-	
	220 V DC	-	-	
	24... 240 V AC	100 mA to 6 A	-	
	415 V AC	100 mA to 3 A	-	
Number of contacts		1 NO (OF) / NC $1 \mathrm{NO} / \mathrm{NC}$ (SD)	$1 \mathrm{NO}(\mathrm{OF})+1 \mathrm{NC}(\mathrm{SD})$	
Connections - terminals		Screw clamp	Spring-loaded Ti24 (sold separately)	
Wiring position		Top and bottom	Top	
Busbar compatibility		-	Bottom	
Operating temperature		$-25 \ldots+50^{\circ} \mathrm{C}$	$-25 \ldots+70^{\circ} \mathrm{C}$	
Storage temperature		$-40 \ldots+85^{\circ} \mathrm{C}$	$-40 \ldots+85^{\circ} \mathrm{C}$	
Standards				
IEC/EN 60947-1		-	-	
IEC/EN 60947-5-1		\square	\square	
IEC/EN 60947-5-4		-	\square	
EN 60947-2		-	-	
EN 62019-2 ${ }^{(1)}$		\square	-	
(1) For C120, DPN.				
C-86 \| Life is On	Schneider Electric		ic	se.com/au

Acti9 Control and signalling

General Overview \& Reference Numbers

iPB Push-Buttons

IEC 60669-1, AS/NZS 60669.1 and AS/NZS IEC 60947-5-1

- iPB push-buttons are used to control electric circuits by means of pulses.
IPB push-buttons

Connection

Tightening torque	Copper cables	
	Rigid	Flexible or with ferrule
1 N.m	$0.5 \mathrm{~mm}^{2} \mathrm{~min}$.	$0.5 \mathrm{~mm}^{2} \mathrm{~min}$.
	$2 \times 2.5 \mathrm{~mm}^{2} \mathrm{max}$.	$2 \times 2.5 \mathrm{~mm} 2 \mathrm{max}$.
- Phase-separated wall that can be divided to allow the teeth of all types of comb busbar to pass through.		
- Staggered terminals to simplify connection.		

Technical data

Main characteristics	
Pollution degree	3
Power circuit	250 V AC
Voltage rating (Ue)	20 A
Current rating (le)	30,000 operations $\mathrm{AC} 22(\operatorname{cos~} \mathrm{cp}=0.8)$
Additional characteristics	$-35^{\circ} \mathrm{C} . .70^{\circ} \mathrm{C}$
Endurance (O-C)	$-40^{\circ} \mathrm{C} . . .80^{\circ} \mathrm{C}$
Operating temperature	Treatment 2 (relative humidity 95% at $\left.55^{\circ} \mathrm{C}\right)$
Storage temperature	Consumption: 0.3 W
Tropicalisation	Service life: 100,000 hours of constant lighting efficiency
LED indicator light	Maintenance-free indicator light (non-interchangeable LEDs)

Acti9 Control and signalling

General overview

ilL indicator lights

AS/NZS IEC 60947-5-1

- ilL indicator lights light up to indicate that a voltage is present.

Connection

Tightening torque

Copper cables	
Rigid	Flexible or with ferrule

	$\left.\begin{array}{ll}\stackrel{\sim}{\sim} \\ \stackrel{\sim}{\sim} \\ \sim\end{array}\right]$

- Phase-separated wall that can be divided to allow the teeth of all types of comb busbar to pass through.
- Staggered terminals to simplify connection.

Dimensions (mm)

Technical data

Main characteristics	3
Pollution degree	$50 \ldots 60 \mathrm{~Hz}$
Power circuit	2 Hz
Operating frequency	$-35^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Flashing frequency	$-40^{\circ} \mathrm{C} . .+80^{\circ} \mathrm{C}$
Additional characteristics	Treatment 2 (relative humidity 95% at $55^{\circ} \mathrm{C}$)
Operating temperature	Consumption per indicator light: 0.3 W
Storage temperature	Service life: 100,000 hours of constant lighting efficiency
Tropicalization	Maintenance-free indicator light (non-interchangeable LEDs)
LED indicator light	

General Overview \& Reference Numbers

iSSW Linear Switches

IEC 60669-1, AS/NZS 60669.1 and AS/NZS IEC 60947-5-1

- iSSW linear switches are used for the manual control of electric circuits

ISSW linear switches
Type
Contact
Diagram
Cat. no.
Width in 9 mm modules

Dimensions (mm)

Technical data

Main characteristics	
Pollution degree	
Power circuit	250 V AC
Voltage rating (Ue)	20 A
Current rating (le)	
Additional characteristics	30,000 operations $\mathrm{AC} 22(\cos \mathrm{cp}=0.8)$
Endurance (O-C)	$-20^{\circ} \mathrm{C} \ldots 50^{\circ} \mathrm{C}$
Operating temperature	$-40^{\circ} \mathrm{C} \ldots 70^{\circ} \mathrm{C}$
Storage temperature	Treatment 2 (relative humidity 95% at $\left.55^{\circ} \mathrm{C}\right)$
Tropicalisation	

$$
<\text { 䍙 }>
$$

Acti9 Control and signalling

General Overview

iCT contactors

© IEC 61095

As per the above standards:
The breadth of the Acti9 iCT contactor range satisfies most application cases.
Acti9 iCT contactors can be combined with auxiliary control, protection and indication functions.

- Acti9 iCT contactors can be used to remote control applications in alternating current:
- lighting, heating, ventilation, roller blinds, sanitary hot water,
- mechanical ventilation systems, etc,
- load-shedding of non-priority circuits.

[^6] of lighting

Reference Numbers

iCT contactors (cont.)

[^7]
Acti9 Control and signalling

General Overview

iCT contactors (cont.)

Ti24 connector connection

Ti24 prefabricated cables connection

iCT contactors (cont.)

Technical data

Clip on DIN rail 35 mm .

$\pm 30^{\circ}$ vertical.

Power circuit	
Voltage rating (Ue) 1P, 2P	250 V AC
3P, 4P	400 V AC
Frequency	50 Hz or 60 Hz
Type of load	See module CA908026
Endurance (O-C)	
Electrical	100,000 cycles
Maximum number of switching operations per day	100
Additional characteristics	
Insulation voltage (Ui)	440 V AC
Pollution degree	2
Rated impulse withstand voltage (Uimp)	2.5 kV (4 kV for 12/24/48 V AC)
Degree of protection (IEC 60529) Device only	IP20
Device in modular enclosure	IP40

Operating temperature $-5^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage temperature $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Tropicalization (IEC 60068-2-30)
Treatment 2 (relative humidity 95% at $55^{\circ} \mathrm{C}$)
ELSV compliance (Extra Low Safety Voltage) for 12/24/48 V AC versions
The product control conforms to the SELV (safety extra low voltage) requirements

Temperature derating table

Acti9 iCT	Ambient temperature $\left({ }^{\circ} \mathbf{C}\right)$		
Rating (A)	$\mathbf{\leq 4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$
63	63	59.8	50
40	40	38	32
25	25	23.8	20
16	16	15.2	12.8

If multiple iCTs side by side: install spacer and apply 0.8 coefficient on upper current values.

Acti9 Control and signalling

General Overview

iCT contactors (cont.)

Mounting accessories

$\mathbf{1}$ 9mm spacer		A9A27062
Auxiliaries		
Indication		
$\mathbf{2} \quad$ Acti9 iACTs	$1 \mathrm{NO}+1 \mathrm{NC}$	A9C15914
		1 CO
	2 NO	A9C15916

Double control inputs

3	Acti9 iACTs	$230 \vee$ AC
		$24 \vee$ AC

Control and indication
4 Acti9 iACTs
230 V AC
A9C15924

Only 1 iACTc, iATEt, iACTp or iACT24 at the left of Acti9 iCT $\geq 25 \mathrm{~A}$

Auxiliaries

iCT contactors (cont.)

Auxiliaries Indication

Wiring diagrams

Mounting

- Mounted to the right of Acti9 iCT
- Mounted to the left of Acti9 iCT by yellow clips ${ }^{(1)}$

Utilization

- Mains power outages:
- < 70 ms : keeps its initial status
- > 80 ms : reset
- put back into operation by manual operation on input X or T.
- Minimum impulse duration: 250 ms

Catalog numbers		A9C15914	A9C18308	A9C18309
Technical specifications				
Control voltage (Ue)	V AC	24... 240	230... 240	24... 48
	V DC	24... 130	-	-
Control voltage frequency	Hz	50/60	50/60	50/60
Width in 9 mm modules		1	2	2
Auxiliary contact (breaking capacity)		- Mininimum: 10 mA at 24 V DC/AC - Maximum: - 5 A at 230 V AC, AC12 - 2 A at 230 V AC, AC15 - 1 A at 130 V DC, DC13	-	-
Number of contacts		$1 \mathrm{NO}+1 \mathrm{NC}$	-	-
Operating temperature	${ }^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage temperature	${ }^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Consumption		-	OFF load: 3 VA Inrush ${ }^{(2):} 2$ VA Holding ${ }^{(2)}$ 0.2 VA	OFF load: 3 VA Inrush ${ }^{(2):} 2$ VA Holding ${ }^{(2)}$: 0.2 VA

(1) Electrical and mechanical link.
(2) Maximum consumption of all contactors controlled.

Acti9 Control and signalling

General Overview

iCT contactors (cont.)

Auxiliaries	Control and indication
Type	Control and indication 24 V DC
	With Ti24 connector

- This auxiliary allows a contactor to be interfaced with the Acti9 Smartlink interface or a programmable logic controller (PLC) in 24 V DC (control, O/C indication)
- 230 V AC control

Mounting

- To the left of the Acti9 iCT contactor using the yellow clips ${ }^{(1)}$.

When an iACT24 is used, the A1/A2 terminals of the contactors should not be wired. Only the yellow clips integral with the IACT24 should be used for connection to the coil.

(1) Mechanical and electrical link.

Technical

iCT contactors (cont.)

Operation of the iACT24

O/C 24 V DC output

- Minimum duration of 230 V AC pulse (Y2): 200 ms .
- 30 iACT24 closing or opening actuations are authorized per minute

Minimum time delay between 2 actuations on the iACT4 via Y1,Y2, Y3 (closing or opening of the Acti9 iCT coil): 220 ms

- 10 closing or opening actuations spaced 440 milliseconds apart are authorized following no loading of the iACT24 during a period of 20 seconds.
Wiring with exclusive selector
230 V AC control $(\mathrm{Y} 1=0) / 24$ V DC control $(\mathrm{Y} 1=1)$

Wiring for non-exclusive 230 V AC and 24 V DC controls

Acti9 Control and signalling

Technical

iCT contactors (cont.)

Consumption
Acti9 iCT contactors - 50 Hz

Type	Rating (In)		Control voltage $\text { (V AC) }(50 \mathrm{~Hz})$	Consumption		Max.power	Reference
	AC7a	AC7b		Holding	Inrush		
1P							
	25 A	8.5 A	230... 240	2.7 VA	9.2 VA	1.2 W	A9C20731
2P							
	16 A	5 A	24	3.8 VA	15 VA	1.3 W	A9C22112
			230... 240	2.7 VA	9.2 VA	1.2 W	A9C22712
			230... 240	2.7 VA	9.2 VA	1.2 W	A9C22715
	25 A	8.5 A	24	3.8 VA	15 VA	1.3 W	A9C20132
			230... 240	2.7 VA	9.2 VA	1.2 W	A9C20732
			230... 240	2.7 VA	9.2 VA	1.2 W	A9C20736
	40 A	15 A	220... 240	4.6 VA	34 VA	1.6 W	A9C20842
	63 A	20 A	24	4.6 VA	34 VA	1.6 W	A9C20162
			220... 240	4.6 VA	34 VA	1.6 W	A9C20862
	100 A (*)	-	220... 240	6.5 VA	53 VA	2.1 W	A9C20882
3P							
	25 A	8.5 A	220... 240	4.6 VA	34 VA	1.6 W	A9C20833
	40 A	15 A	220... 240	6.5 VA	53 VA	2.1 W	A9C20843
	63 A	20 A	220... 240	6.5 VA	53 VA	2.1 W	A9C20863
4P							
	16 A	5 A	24	4.6 VA	34 VA	1.6 W	A9C22114
	25 A	8.5 A	24	4.6 VA	34 VA	1.6 W	A9C20134
			220... 240	4.6 VA	34 VA	1.6 W	A9C20834
			24	4.6 VA	34 VA	1.6 W	A9C20137
			220... 240	4.6 VA	34 VA	1.6 W	A9C20837
			220... 240	4.6 VA	34 VA	1.6 W	A9C20838
	40 A	15 A	220... 240	6.5 VA	53 VA	2.1 W	A9C20844
			220... 240	6.5 VA	53 VA	2.1 W	A9C20847
	63 A	20 A	24	6.5 VA	53 VA	2.1 W	A9C20164
			220... 240	6.5 VA	53 VA	2.1 W	A9C20864
			24	6.5 VA	53 VA	2.1 W	A9C20167
			220... 240	6.5 VA	53 VA	2.1 W	A9C20867
			220... 240	6.5 VA	53 VA	2.1 W	A9C20868
	100 A (*)	-	220... 240	13 VA	106 VA	4.2 W	A9C20884

[^8]Technical

iCT contactors (cont.)

Dimensions (mm)

$$
<\text { 冒 }>
$$

Acti9 Control and signalling

General overview

iCT+ high-performance contactors

iCT+ high-performance contactors allow remote control of single-phase circuits. They are designed for demanding applications.

EN 60669-2-2
iCT+ high-performance contactors can be used for remote control of applications on AC networks:

- lighting, heating, ventilation, roller blinds, domestic hot water
- mechanical ventilation systems, etc.
- load shedding on non-priority circuits.

(1) Supplied with a 9 mm spacer (cat. no. A9N27062): to be used for mounting the iCT+ alongside a circuit breaker, contactor, impulse relay, etc., in order to maintain optimal operation.

(!)

It is compulsory:

- to connect the neutral
- to keep the same control circuit connection "A1: phase", "A2: neutral"
- to use the same phase for connection of the power and control functions.

Operation (manual-control contactor)

General overview
iCT+ high-performance contactors (cont.)
Connection

Type	Tightening torque	Copper cables	
		Rigid or flexible with ferrule	Rigid or flexible without ferrule
iCT+	1 N.m	$2 \times 1.5 \mathrm{~mm}^{2}$	$\begin{aligned} & 2 \times 2.5 \mathrm{~mm}^{2} \\ & 1 \times 4 \mathrm{~mm}^{2} \end{aligned}$

Technical data

Control circuit		
Coil voltage (Uc)		230 V AC (± 10 \%)
Frequency		50 Hz
Inrush power		11 VA
Holding power		1.1 VA
Power circuit		
Voltage rating (Ue)		230 V AC (± 10 \%)
Frequency		50 Hz
Electrical load	Minimum	20 W
	Maximum	3600 W
Max. number of switching operations per minute		6
Other characteristics		
Endurance (O-C) Electrical		5.000 .000 cycles
Pollution degree		3
Degree of protection (IEC 60529)	Device only	IP20
	Device in modular enclosure	IP40 Insulation class \|I
Operating temperature		$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Storage temperature		$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Tropicalization (IEC 60068-1)		2 (relative humidity of 95% at $55^{\circ} \mathrm{C}$)

High-performance contactors	
Type	iCT +
Standard $1 \mathrm{P}+\mathrm{N}$	70
1P+N with manual control	70

$$
<\text { 国 }>
$$

Acti9 Control and signalling

General overview
iTL impulse relays
IEC 60669-2-2 iTLs:
AS/NZS IEC 60947-5-1

Almpulse relays

General overview

iTL impulse relays (cont.)

Extensions iETL

Centralised control + indication

iATLc+s
Used for centralised control, thanks to a "pilot line", of a group of impulse relays controlling separate circuit, while at the controlling separate circuit, while at the
same time maintaining local individual same time maintaining local in
control of each impulse relay
Remote indication of the mechanical status of each relay

Multi-level centralised
control iATLc+c
Allows centralised control
of a group of iTLc or "iTL + ATLc" impulse relays

Impulse relays are used:

Closing of the impulse relay pole(s) is triggered by an impulse on the coil.

- Having two stable mechanical positions, the pole(s) will be opened by the next impulse. Each impulse received by the coil reverses the position of the pole(s)
Can be controlled by an unlimited number of pushbuttons.
- Zero energy consumption

Control iATLz

- Must be used when installing several illuminated PBs in parallel to control an impulse relay (prevents operating malfunctions)

Step by step control iATL4
Allows step-by-step control of two circuits via a single pushbutton

Acti9 Control and signalling

General overview

iTL impulse relays (cont.)

Mounting accessories

$\mathbf{1}$	Yellow clips	A9C15415
$\mathbf{2}$	9 mm spacer	A9A27062

Auxiliaries
Indication
$\longrightarrow \nearrow \sim$

| $\mathbf{3}$ iATLs ${ }^{(1)}$ | - | A9C15405 |
| :--- | :--- | :--- | :--- |
| Centralised control + indication | | |
| $\mathbf{4} \quad{\text { iATLc }+ \text { s }^{(3)}}^{24 \ldots 240 \vee ~ A C ~}$ | A9C15409 | |

Multi-level centralised control

$\mathbf{5}$	$\mathrm{iATLc}+\mathrm{c}^{(2)(3)}$	$24 \ldots 240 \mathrm{VAC}$

Step by step control

$\mathbf{6}$	iATL4	230 V AC	A9C15412

Control by illuminated push-buttons

$\mathbf{7}$	iATLz	$230 \ldots 240$ V AC
Latched control		A9C15413
$\mathbf{8}$	iATLm ${ }^{(1)}$	
Control and indication		
$\mathbf{9}$	iATL24	230 V AC

(1) The iATLs and IATLm 9 mm auxiliaries must be mounted to the right of an impulse relay. (2) Connection by traditional cabling.

The iATLc+c must be mounted to the right of an iATLc+s or an iATLc.
(3) The centralised control functions (iTLc, iATLc, iATLc+s, iATLc+c) only operate on AC voltage networks.

1

General overview

iTL impulse relays (cont.)

Acti9 Control and signalling

Auxiliaries

iTL impulse relays (cont.)

Auxiliaries choice in V AC and V DC

$\begin{aligned} & \hline \text { VAC } \\ & \hline \text { Type } \end{aligned}$	Choice impulse relays auxiliaries																	
	Standard ITL						Changeover iTLI					iTLc centralised control			iTLm control on latched order	iTLs remote indication		
Rating A	16					32	16					16			16	16		
Control voltage (UC) V AC	230/240	130	48	24	12	230/240	2301240	130	48	24	12	230/240	48	24	2301240	2301240	48	24
Auxiliaries																		
Extension																		
iETL	-	-	-	\square		-	\square	■	-	-	■	-	■	-	■	-	■	-
Centralised control + indication																		
iATLC+s	\square	■	■	\square		\square	\square	■	\square	-	-	-	-	-	-	■	-	-
Centralised control																		
iATLC	-	■	-	\square	-	-	\square	■	\square	-	-	-	-	-	-	■	-	-
Indication																		
iATLs	■	-	-	\square	-	\square	\square	■	\square	-	\square	■	■	\square	-	■	-	-
Multi-level centralised control																		
iATLC+C	-	\square	-	\square	-	\square	\square	\square	\square	-	-	\square	■	-	-	-	-	\square
Latched control																		
AATLm	-	-	-	-	\square	■	-	■	-	-	-	-	-	-	-	-	-	-
Control for iluminated Pushbutton																		
iATLz	\square	-	-	-	-	■	\square	-	-	-	-	■	-	-	-	-	-	-
Step by step control																		
iATL4	■	-	-	-	-	■	\square	-	-	-	-	■	-	-	-	■	-	-
Control and indication																		
iATL24	\square	$-$	-	-	-	\square	\square	-	-	-	-	-	-	-	-	-	-	-
V DC	Choice impulse relays auxiliaries																	
Type	Standard	ard iTL					Changeo	over it				iTLc centra control	alised ol		iTLm control on latched order	iTLs re	emote tion	
Rating A	16					32	16					16			16	16		
Control voltage (UC) V DC	11048	48	24	12	6	110	11048	84		12	6	-			110	1102	24	12
Auxiliaries																		
Extension																		
iETL	- ■	11	■	-	-	-	-	-		-	\square	-	-	-	-	-	\square	\square
Centralised control + indication																		
iATLs	- ■	-	1	-	-	-	- -	-	-	\square	\square	-	-	-	-	-	\square	\square

References

iTL impulse relays (cont.)

Catalogue numbers
iTL impulse relays

Tуpe			1P	2P	3P	4P
			1 NO	2 NO	$1 \mathrm{NO}+1 \mathrm{NO} / \mathrm{NC}+1 \mathrm{NO}$	4 NO
						$2 \mathrm{NO}+1 \mathrm{NO} / \mathrm{NC}+1 \mathrm{NO}$
Rating (ln)	Control voltage (Uc)					
	$\begin{aligned} & \text { (V AC) } \\ & (50 / 60 \mathrm{~Hz}) \end{aligned}$	(V DC)				
16 A	12	6	A9C30011	A9C30012	A9C30011 + A9C32016	A9C30012 + A9C32016
	24	12	A9C30111	A9C30112	A9C30111 + A9C32116	
	48	24	A9C30211	A9C30212	A9C30211 + A9C32216	A9C30212 + A9C32216
	130	48	A9C30311	A9C30312	A9C30311 + A9C32316	A9C30312 + A9C32316
	230... 240	110	A9C30811	A9C30812	A9C30811 + A9C32816	
Width in 9 mm modules			2	2	4	4
			1 NO	$1 \mathrm{NO}+1 \mathrm{NO}$	$1 \mathrm{NO}+1 \mathrm{NO}+1 \mathrm{NO}$	$1 \mathrm{NO}+1 \mathrm{NO}+1 \mathrm{NO}+1 \mathrm{NO}$
32 A	230... 240	110	A9C30831	A9C30831 + A9C32836	A9C30831 + $2 \times$ A9C32836	A9C30831 $+3 \times$ A9C32836
Width in 9 mm modules			2	4	6	8

iTLI impulse relays

Acti9 Control and signalling

References

iTL impulse relays (cont.)

iTLc , iTLm, iTLs with built-in auxiliary function - Catalogue numbers
iTLc impulse relay with centralised control
Type
iTLm impulse relay with latched control

Type
Rating (In)
Control voltage (Uc)
(V AC) $(50 / 60 \mathrm{~Hz})$
Width in 9 mm modules
$230 \ldots 240$

iTLs impulse relay with remote indication*

Type			1 P	3P
			1 NO	$1 \mathrm{NO}+1 \mathrm{NO} / \mathrm{NC}+1 \mathrm{NO}$
Rating (In)	Control voltage (Uc)			
	(V AC) ($50 / 60 \mathrm{~Hz}$)	(V DC)		
16 A	230... 240	110	A9C32811	A9C32811 + A9C32816
Width in 9 mm modules			2	4

[^9]
General Overview

iTL impulse relays (cont.)

Connection

Ti24 connector connection

Ti24 prefabricated cables connection

Acti9 Control and signalling

General Overview

iTL impulse relays (cont.)

Operation

Technical data

Control circuit			
		iTL and iTLI 16 A iTLc, iTLm, iTLs, iETL 16 A	iTL 32 A, iETL 32 A
Control voltage (Uc)	Tolerence at 50 Hz	+6\%,-15 \%	
	Tolerence at 60 Hz	$\pm 6 \%$,	
	Tolerence V DC	+6 \%, -10 \%	
Dissipated power (during the impulse)		1, 2, 3P: 19 VA	19 VA
		4P: 38 VA	
Illuminated PB control		Max. current 3 mA (if > use an ATLz)	
Operating threshold		Min. 85% of Un in conformance with IEC/EN60669-2-2	
Duration of the control order		50 ms to 1 s (200 ms recommended)	
Response time		50 ms	
Power circuit			
Voltage rating (Ue)	1P, 2P	$24 . . .250$ V AC	
	3P, 4P	24....415 V AC	
Frequency		50 Hz or 60 Hz	
Maximum number of operations per minute		5	
Maximum number of switching operation a day		100	
Additional characteristics			
Insulation voltage (Ui)		440 V AC	
Pollution degree		3	
Rated impulse withstand voltage (Uimp)		6 kV	
Overvoltage category		IV	
Endurance (O-C)			
Electrical		$\begin{aligned} & \text { 200,000 cycles (AC21) } \\ & \hline \text { 100,000 cycles (AC22) } \end{aligned}$	50,000 cycles (AC21)
			20,000 cycles (AC22)
Other characteristics			
Degree of protection (IEC 60529)	Device only	IP20	
	Device in modular enclosure	IP40	Insulation class II
Operating temperature		$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	
Storage temperature		$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Tropicalization (IEC 60068-1)		Treatment 2 (relative humidity 95% at $55^{\circ} \mathrm{C}$)	

iTL impulse relays (cont.)

Electrical auxiliaries for iTL impulse relays

		Indication	Control	
Auxiliaries		iATLs	iATLc+s	iATLc+c
Type		Indication	Centralised control + indication	Multi-level centralised control
Function				
		- Allows remote indication of the associated impulse relay	- Used for centralised control, thanks to a "pilot line", of a group of impulse relays controlling separate networks, while at the same time maintaining local individual control of each impulse relay - And for remote indication of the mechanical status of each relay	- Used to control the centralised controls of a number of impulse relay groups, while at the same time maintaining local individual control and centralised control by level
Wiring diagrams				
		-	-	- Each group, made up of iTLc or (iTL or iTLl or iTLs) + iATLc+s, must only contain a single iATLc+c - Maximum number of impulse relays that can be controlled: - 230 V AC: 24 - 130 V AC: 12 - 48 V AC: 5
Mounting				
		- Mounted to the right of iTL by yellow clip		- Without mechanical link with impulse relays and auxiliaries
Catalog numbers		A9C15405	A9C15409	A9C15410
Technical specifications				
Control voltage (Ue)	V AC	-	24... 240	24... 240
	V DC	-	-	-
Control voltage frequency	Hz	-	50/60	50/60
Width in 9 mm modules		1	2	2
Auxiliary contact (breaking capacity)		- Mininimum: 10 mA at 24 V DC/AC - Maximum (IEC 60947-5-1): - 6 A at 12... 240 V AC - 6 A at $12 \ldots 24 \mathrm{~V}$ DC - 2 A at $15 . . .240 \mathrm{~V} \mathrm{AC}$ - 2 A at $13 . . .24 \mathrm{~V}$ DC	- Mininimum: 10 mA at 24 V DC/AC - Maximum (IEC 60947-5-1): - 6 A at 12... 240 V AC - 6 A at $12 \ldots 24 \mathrm{~V}$ DC - 2 A at $15 . . .240 \mathrm{~V} \mathrm{AC}$ - 2 A at $13 . . .24 \mathrm{~V}$ DC	-
Number of contacts		-	-	-
Operating temperature	${ }^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage temperature	${ }^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Acti9 Control and signalling

Auxiliaries

iTL impulse relays (cont.)

Electrical auxiliaries for iTL impulse relays (cont.)

	Control	
Auxiliaries	iATL4	iATLz
Type	Step by step control	Control by illuminated push-buttons

Function

- The cycle is as follows:
- 1st impulse - iTL 1 closed, iTL 2 open
- 2nd impulse - iTL 1 open, iTL 2 closed
- 3rd impulse - iTL 1 and 2 closed
- 4th impulse - iTL 1 and 2 open
- 5th impulse - iTL 1 closed, iTL 2 open, etc
- Provide an iATLz when the current drawn up by the illuminated push-buttons is higher than 3 mA (this curren is sufficient to keep the coils energised). Above this value fit one extra iATLz per 3 mA
- For example: for 7 mA , fit 2 iATLz

Mounting

Catalog numbers		A9C15412	A9C15413
Technical specifications			
Control voltage (Ue)	V AC	230	$230 \ldots 240$
	V DC	-	-
Control voltage frequency	Hz	$50 / 60$	$50 / 60$
Width in 9 mm modules		4	2
Auxiliary contact (breaking capacity)		-	-
Number of contacts		-	-
Operating temperature	${ }^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C} \mathrm{to}+50^{\circ} \mathrm{C}$
Storage temperature	${ }^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \mathrm{to}+70^{\circ} \mathrm{C}$

Auxiliaries

iTL impulse relays (cont.)

Electrical auxiliaries for iTL impulse relays (cont.)
Type Control and indication
Wiring diagrams

Wiring with exclusive selector 230 V AC and 24 V DC controls

Wiring for non-exclusive 230 V AC and 24 V DC controls

Mounting

- To the left of the iTL impulse relay using the yellow clips ${ }^{(1)}$
- When an iATL24 is used, the A1/A2 terminals of the impulse relay should not be wired. Only the yellow clips integral with he iATL24 should be used for connection to the coll

Utilization		- 230 V AC interface: - Y 1 : enabling of 24 VDC control $(\mathrm{Y} 1=1)$ or inhibition of 24 VDC control $(\mathrm{Y} 1=0)$. - Y2: 230 V pulse control - "TI24" 24 V DC interface: - Y3: 24 V DC control of iTL closing on rising edge and opening on falling edge - reading of the impulse relay status (opened or closed) from the position of the integrated O/C auxiliary contact - monitoring of connection of the "Ti24" terminal block by the upstream system (PLC, supervision system) via the 24 V terminal (in the centre of the Ti24 terminal block)
Catalog numbers		A9C15424
Technical specifications		
Control voltage (Ue)	V AC	230, +10 \%, -15 \% (Y2)
	V DC	24, ± 20 \% (Y3)
Control voltage frequency	Hz	50/60
Insulation voltage (Ui)	V AC	250
Rated impulse withstand voltage (Uimp)	kV	8 (OVC IV)
Pollution degree		3
Degree of protection		IP20B device only
		IP40 device in modular enclosure
Width in 9 mm modules		3
Auxiliary contact (O/C) Ti24		24 V DC protected output, min. 2 mA , max. 100 mA
Contact		$1 \mathrm{O} / \mathrm{C}$ operating category AC 14
Operating temperature	${ }^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage temperature	${ }^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Consumption		<1 W
Standard		IEC/EN 60947-5-1

(1) Mechanical and electrical connection.

Acti9 Control and signalling

Technical

iTL impulse relays (cont.)

Electrical auxiliaries for iTL impulse relays (cont.)

Operation of the iATL24
O/C 24 V DC output

Parameter
Time delay between iATL24 closing and indication

- Minimum duration of 230 V AC pulse (Y2): 200 ms .
- 30 iATL24 closing or opening actuations are authorized per minute: Minimum time delay between 2 actuations on the iATL24 via Y1,Y2, Y3 (closing or opening of the iTL coil): 440 ms .
- 10 closing or opening actuations spaced 440 milliseconds apart are authorized following no loading of the iATL24 during a period of 20 seconds.

Wiring with exclusive selector 230 V AC and 24 V DC controls

Wiring for non-exclusive 230 V AC and 24 V DC controls

Accessories

iTL impulse relays (cont.)

Type	Security	

Dimensions (mm)

iTL 1P iTL+iETL
iTLC
$i T L m$
iTLs
iTLi
iETL

iATLc
iATLs
iATLm

Acti9 Control and signalling

General overview

iTL+ high-performance impulse relays

The iTL+ high-performance impulse relay allows remote control of single-phase circuits. It is designed for demanding applications.

EN 60669-2-2

The iTL+ high-performance impulse relay is used for push-button control of lighting circuits consisting of:

- incandescent lamps, low-voltage halogen lamps, etc. (resistive loads)
- fluorescent tubes, discharge lamps, etc. (inductive loads).

(1) Supplied with a 9 mm spacer (cat. no. A9N27062): to be used for mounting the iTL+ alongside a circuit breaker, contactor, impulse relay, etc., in order to maintain optimal operation.

It is compulsory:

- to connect the neutral
- to keep the same control circuit connection "A1: phase", "A2: neutral"
- to use the same phase for connection of the power and control functions.

Operation

Connection

General overview
iTL+ high-performance impulse relays (cont.)
They combine the benefits of static switching and

Control circuit	
Coil voltage (Uc)	230 V AC
Frequency	50 Hz
Inrush power	11 VA
Holding power	1.1 VA
Control by luminous push button	Max. current 5 mA
Control order duration	50 ms to $1 \mathrm{~s} \mathrm{(recommended} \mathrm{200} \mathrm{ms)}$
Power circuit	230 V AC
Voltage rating (Ue)	50 Hz
Frequency	20 W
Electrical load	3600 W
Max. number of switching operations per minute	6
Other characteristics	
Endurance (O-C) Electrical	
Degree of protection (IEC 60529)	Device only
	Device in modular enclosure
Noise level at activation	IP 40 Insulation class II
Operating temperature	<30 dBA
Storage temperature	$-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Tropicalization (IEC 60068-1)	

Weight (g)

High-performance contactors	
Type	iTL +
$1 \mathrm{P}+\mathrm{N}$	70

Acti9 Control and signalling

General overview

Time Delay Relays

Time Switches - Analogue \& Digital

A9E16065

Time Delay Relays - 0.1s to 100h					
Type	No. of contacts	Rating	Width in mod of 9mm	Coil voltage	Reference
RTA	$1 \mathrm{C} / \mathrm{O}$	8A	2	24 V DC or $24-240 \mathrm{~V}$ AC	A9E16065
RTB	$1 \mathrm{C} / \mathrm{O}$	8A	2	24 V DC or $24-240 \mathrm{~V}$ AC	A9E16066
RTC	$1 \mathrm{C} / \mathrm{O}$	8A	2	24 V DC or $24-240 \mathrm{~V}$ AC	A9E16067
RTH	$1 \mathrm{C} / \mathrm{O}$	8A	2	24 V DC or $24-240 \mathrm{~V}$ AC	A9E16068
RTL	$1 \mathrm{C} / \mathrm{O}$	8A	2	24 V DC or $24-240 \mathrm{~V}$ AC	A9E16069
RTMF	$1 \mathrm{C} / \mathrm{O}$	8A	2	12-240V AC/DC	A9E16070

Note

Function and use:

- RTA delay on make: allows a delay in the energisation of a load (coil of a contactor or relay). The time delay cycle begins at the energisation of the RTA and the load is switched on at the end of the time period.
- RTB single shot: energizes a load at the closing of an auxiliary push-button. The time delay starts at the closing of the auxilary push-button.
- RTC delay on break: energizes a load at the closing of an auxiliary push-button. The time delay starts at the opening of the auxiliary push-button. Mini impulse duration 6 200ms. Restart time delay any time with push button.
- RTH interval timer: timing of load from the energisation (coil of a contactor or relay). The time delay cycle begins, on the energisation of the RTH, by switching on the load. At the end of the time delay, the load is de-energized.
- RTL repeat cycle timer: repetitive cycle which alternatively energizes and de-energizes a load. From the energisation of RTL, the load is switched on.
- RTMF multi function timer: one relay providing functions $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and H via a selector switch located in front.

U : supply voltage ; UZ : load voltage ; S : signal from contact/pushbutton

General overview

Relays

Time delay relays are used in service sector and industrial buildings for small automatic control systems: ventilation, heating, animation, roller blind servo controls, escalators, pumps, lighting, signalling, monitoring, etc

Time delay relays

iRTA

- Delays energizing of a load

iRTB
- Delays de-energizing of a load upon closing of an auxiliary contact (push button)

iRTC

- Delays de-energizing of a load upon opening of an auxiliary contact (push button)

^ Time delay

iRTH

- Applies a time delay to de-energizing of a load

iRTL

- Applies a time delay to energizing and de-energizing of a load during different times, repeatedly (flasher)

iRTMF

- Allows one of the four types of time delay to be selected: A, B, C or H

[^0]: (*) * The 10 mA sensitivity is useful for certain very specific applications, where there is a risk that someone could sustain a non-dangerous current (10 to 30 mA) without being able to get free. Example: health care equipment for hospital beds. Generally, devices with this very high sensitivity are liable to cause frequent tripping, due to the natural leakage currents of the installation.

[^1]: (1) According to amendment 2 of the wiring rules AS/NZS 3000, Type AC RCD shall not be used for the following applications from 30 April 2023:

 Domestic and Residential, all final subcircuits

 - Non-domestic and non-residential socket outlets and lighting, directly connected hand-held equipment and increased risk circuits up to 32A.

 Recognising Type A RCDs as accepted general usage, Schneider doesn't carry any Type AC RCD in the Acti9 offer of RCCBs and RCBOs.

[^2]: * CM: common mode (phase to earth and neutral to earth)
 (1) 1 differential mode (phase to neutral).
 (1) Uoc: combinated waveform voltage: 10 kV .

[^3]: (2) compatible only with power supply terminals (bottom), having removed the indication flap of connection direction

[^4]: (1) For C120, DPN.
 ${ }^{*}(\mathrm{Ua})$: Voltages measured between the phase and the neutral conductor, at which the MSU device must control the associated protective device.

[^5]: (1) For C120, DPN

[^6]: - Consistent with the entire Acti9 offer and with all types

[^7]: (*) do not use for lighting applications

[^8]: (*) do not use for lighting applications

[^9]:

